Deep learning-based encoder for one-bit quantization

2019-12-01
Balevi, Eren
Andrews, Jeffrey G.
© 2019 IEEE.This paper proposes a deep learning-based error correction coding for AWGN channels under the constraint of one-bit quantization in receivers. An autoencoder is designed and integrated with a turbo code that acts as an implicit regularization. This implicit regularizer facilitates approaching the Shannon bound for the one-bit quantized AWGN channels even if the autoencoder is trained suboptimally, since one-bit quantization stymies ideal training. Our empirical results show that the proposed coding scheme gives better results at finite block lengths than conventional turbo codes even for QPSK modulation, which can achieve the Shannon bound at infinite block length despite one-bit quantization. Furthermore, the proposed coding method makes one- bit quantization operational even for 16-QAM, which is unprecedented.
2019 IEEE Global Communications Conference, GLOBECOM 2019

Suggestions

Autoencoder-Based Error Correction Coding for One-Bit Quantization
Balevi, Eren; Andrews, Jeffrey G. (2020-06-01)
This paper proposes a novel deep learning-based error correction coding scheme for AWGN channels under the constraint of one-bit quantization in receivers. Specifically, it is first shown that the optimum error correction code that minimizes the probability of bit error can be obtained by perfectly training a special autoencoder, in which "perfectly" refers to converging the global minima. However, perfect training is not possible in most cases. To approach the performance of a perfectly trained autoencoder...
Reliable Low Resolution 01-4DM Receivers via Deep Learning
Balevi, Eren; Andrews, Jeffrey G. (2018-01-01)
This paper develops novel deep learning-based architectures and design methodologies for an orthogonal frequency division multiplexing (OFDM) receiver under the constraint of one-bit complex quantization. Single bit quantization greatly reduces complexity and power consumption, but makes accurate data detection difficult. This is particularly true for multicarrier waveforms, which have high peak-to-average ratio in the time domain and fragile subcarrier orthogonality in the frequency domain. The severe dist...
Deep Learning-Based Hybrid Approach for Phase Retrieval
IŞIL, ÇAĞATAY; Öktem, Sevinç Figen; KOÇ, AYKUT (2019-06-24)
We develop a phase retrieval algorithm that utilizes the hybrid-input-output (HIO) algorithm with a deep neural network (DNN). The DNN architecture, which is trained to remove the artifacts of HIO, is used iteratively with HIO to improve the reconstructions. The results demonstrate the effectiveness of the approach with little additional cost.
One-Bit OFDM Receivers via Deep Learning
Balevi, Eren; Andrews, Jeffrey G. (2019-06-01)
This paper develops novel deep learning-based architectures and design methodologies for an orthogonal frequency division multiplexing (OFDM) receiver under the constraint of one-bit complex quantization. Single bit quantization reduces greatly the complexity and power consumption but makes accurate channel estimation and data detection difficult. This is particularly true for multicarrier waveforms that have high peak-to-average power ratio in the time domain and fragile subcarrier orthogonality in the fre...
Deep Spectral Convolution Network for Hyperspectral Unmixing
Akar, Gözde (2018-10-10)
In this paper, we propose a novel hyperspectral unmixing technique based on deep spectral convolution networks (DSCN). Particularly, three important contributions are presented throughout this paper. First, fully-connected linear operation is replaced with spectral convolutions to extract local spectral characteristics from hyperspectral signatures with a deeper network architecture. Second, instead of batch normalization, we propose a spectral normalization layer which improves the selectivity of filters b...
Citation Formats
E. Balevi and J. G. Andrews, “Deep learning-based encoder for one-bit quantization,” presented at the 2019 IEEE Global Communications Conference, GLOBECOM 2019, Hawaii, Amerika Birleşik Devletleri, 2019, Accessed: 00, 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85081964523&origin=inward.