Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Trajectory tracking control of robotic manipulators with flexible joints
Download
047415.pdf
Date
1995
Author
Erdağı, İnanç
Metadata
Show full item record
Item Usage Stats
136
views
56
downloads
Cite This
URI
https://hdl.handle.net/11511/10036
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Trajectory tracking control of flexible-joint robots
Ider, SK; Özgören, Mustafa Kemal (2000-07-01)
Inverse dynamics control of flexible-joint robots is addressed. It is shown that, in a flexible-joint robot, the acceleration level inverse dynamic equations are singular because the control torques do not have an instantaneou; effect on the end-effector accelerations due to the elastic media. Implicit numerical integration methods that account for the higher order derivative information are utilized for solving the singular set of differential equations. The trajectory tracking control law presented linear...
Trajectory tracking control of parallel robots in the presence of joint drive flexibility
Ider, S. Kemal; Korkmaz, Ozan (Elsevier BV, 2009-01-09)
Trajectory tracking control of parallel manipulators is aimed in the presence of flexibility at the joint drives. Joint structural damping is also considered in the dynamic model. The system is first converted into an open-tree structure by disconnecting a sufficient number of unactuated joints. The closed loops are then expressed by constraint equations. It is shown that, in a parallel robot with flexible joint drives, the acceleration level inverse dynamics equations are singular because the control torqu...
Trajectory tracking control of robots with flexible links
Ider, SK; Özgören, Mustafa Kemal; Ay, V (2002-11-01)
A new method is developed for the end-effector trajectory tracking control of robots with flexible links. In order to cope with the non-minimum phase property of the system, the closed-loop poles are placed at desired locations using full state feedback. The dynamic equations are linearized about the rigid motion. A composite control law is designed to track the desired trajectory while at the same time the internal dynamics is stabilized. The proposed method is valid for all types of manipulators with any ...
Trajectory tracking control of a two link planar manipulator with link flexibility
Ay, Volkan; İder, Kemal; Özgören M. Kemal; Department of Mechanical Engineering (1997)
TRAJECTORY TRACKING CONTROL OF AN UNDERACTUATED UNDERWATER VEHICLE REDUNDANT MANIPULATOR SYSTEM
Korkmaz, Ozan; İDER, SITKI KEMAL; Özgören, Mustafa Kemal (2016-09-01)
The purpose of this study is to control the position of an underactuated underwater vehicle manipulator system (U-UVMS). It is possible to control the end-effector using a regular 6-DOF manipulator despite the undesired displacements of the underactuated vehicle within a certain range. However, in this study an 8-DOF redundant manipulator is used in order to increase the positioning accuracy of the end-effector. The redundancy is resolved according to the criterion of minimal vehicle and joint motions. The ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
İ. Erdağı, “Trajectory tracking control of robotic manipulators with flexible joints,” Middle East Technical University, 1995.