Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Scaling and Self-Similarity of One-Dimensional Suspended Sediment Transport Equations
Date
2014-01-01
Author
Carr, K.J.
Ercan, Ali
Kavvas, M.L.
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
92
views
0
downloads
Cite This
© 2014 American Society of Civil Engineers.The governing physical process of sediment transport can be represented in a scale model without the simplifying assumptions required in numerical modeling, making scale modeling a considerable complement to numerical simulations. However, the current methods utilized in scaling sediment transport in unsteady open-channel flow result in a number of model and scale effects, which decrease the accuracy and applicability of scale models. These model and scale effects may be reduced and model applicability may be increased by determining the conditions under which the governing equation for nonequilibrium sediment transport in unsteady flows are self-similar and require no scaling of sediment diameter and density. Conditions for self-similarity and unscaled sediment properties, for nonequilibrium sediment transport could be identified by applying the one-parameter Lie group of point-scaling transformations. When coupled with one-parameter Lie group scaling of the Saint Venant equations for unsteady open channel flow, the scale effects of physical models could be reduced further. This article describes briefly the methodology of Lie-group scaling transformations and leaves the derivation of the self-similarity conditions of one-dimensional suspended sediment transport equations to later studies.
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84935506469&origin=inward
https://hdl.handle.net/11511/100421
DOI
https://doi.org/10.1061/9780784413548.120
Conference Name
World Environmental and Water Resources Congress 2014: Water Without Borders
Collections
Department of Civil Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Mathematical modeling of a small-scale helicopter and mrac design with time based uncertainty parametrizations
Gürler, Mustafa; Kutay, Ali Türker; Department of Aerospace Engineering (2018)
In this thesis, nonlinear mathematical modeling of a small scale model helicopter is presented. In addition, problems in uncertainty parametrization component of Model Reference Adaptive Control (MRAC) is investigated and external uncertainty on the system is parametrized using universal approximators such as Fourier Series and Chebyshev Polynomials in time dependent form. Advantages of using times based universal approximators in MRAC design of MIMO systems are presented. Proposed controller is tested on t...
Hybrid finite element for analysis of functionally graded beams
Sarıtaş, Afşin; Soydas, Ozan (2017-01-01)
A hybrid finite element model is presented, where stiffness and mass distributions over a beam with functionally graded material (FGM) are accurately modeled for both elastic and inelastic material responses. Von Mises and Drucker-Prager plasticity models are implemented for metallic and ceramic parts of FGM, respectively. Three-dimensional stress-strain relations are solved by a general closest point projection algorithm, and then condensed to the dimensions of the beam element. Numerical examples and veri...
TESTING, MODELLING AND SIMULATION OF LINEAR AND CIRCULAR LINEAR SHAPED CHARGES
Top, Mert; Dal, Hüsnü; Yıldırım, Raif Orhan; Department of Mechanical Engineering (2022-7-28)
In this thesis, testing, modelling, and simulation studies of the Linear Shaped Charge (LSC) and Circular Linear Shaped Charge (CLSC) are presented. CLSC is an alternative design to the Flexible Linear Shaped Charge (FLSC). It contains a copper liner and metal housing which are designed and produced by considering the target profile. Then, a molten explosive (PBX-110) is cured inside the copper and housing, so the CLSC production is completed. By following this production method, different LSC and CLSC conf...
Numerical Aspects of POD-Based Reduced-Order Modeling forDarcy-Brinkman Equations
Güler Eroğlu, Fatma; Kaya Merdan, Songül (2018-10-21)
We propose, analyze and test a reduced order modelling with proper orthogonal decomposition (POD) method for the modeling to flows governed by double diffusive convection, which models flow driven by two potentials with different rates of diffusion. We present a theoretical analysis of the method and give results for various numerical tests on benchmark problems that will demonstrate both the theory and the effectiveness of the proposed method.
Modeling of the Bosphorus exchange flow dynamics
SÖZER, ADİL; Ozsoy, Emin (2017-04-01)
The fundamental hydrodynamic behavior of the Bosphorus Strait is investigated through a numerical modeling study using alternative configurations of idealized or realistic geometry. Strait geometry and basin stratification conditions allow for hydraulic controls and are ideally suited to support the maximal-exchange regime, which determines the rate of exchange of waters originating from the adjacent Black and Mediterranean Seas for a given net transport. Steady-state hydraulic controls are demonstrated by ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. J. Carr, A. Ercan, and M. L. Kavvas, “Scaling and Self-Similarity of One-Dimensional Suspended Sediment Transport Equations,” presented at the World Environmental and Water Resources Congress 2014: Water Without Borders, Oregon, Amerika Birleşik Devletleri, 2014, Accessed: 00, 2022. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84935506469&origin=inward.