Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Development of Stand-Off Imaging Systems Using Low Cost Plasma Detectors That Work in the GHz to THz Range
Date
2021-01-01
Author
AKBAR, DEMİRAL
Altan, Hakan
Ribeiro, Marco
ŞAHİN, ASAF BEHZAT
Kuşoğlu Sarıkaya, Cemre
Pavia, Joao Pedro
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
119
views
0
downloads
Cite This
URI
https://link.springer.com/chapter/10.1007/978-94-024-2082-1_19
https://hdl.handle.net/11511/100799
Relation
Terahertz (THz), Mid Infrared (MIR) and Near Infrared (NIR) Technologies for Protection of Critical Infrastructures Against Explosives and CBRN. NATO Science for Peace and Security Series B: Physics and Biophysics
Collections
Department of Physics, Book / Book chapter
Suggestions
OpenMETU
Core
Development of Stand-Off Imaging Systems Using Low Cost Plasma Detectors That Work in the GHz to THz Range
Altan, Hakan; Pavia, Joao Pedro; Ribeiro, Marco; Şahin, Asaf Behzat; Kuşoğlu-Sarıkaya, Cemre (Springer-Verlag, 2021-05-01)
Technologies used to detect mm-wave/Terahertz (THz) radiation range from those that are based on temperature changes, direct/indirect transitions or those that detect through the applied electric field. However, many commercially available detectors have limitations in terms of speed and responsivity and are quite expensive. For these reasons, commercially available indicator lamps which are called glow discharge detectors (GDDs) can be a good alternative since they are low cost and can detect microwave to ...
Development of Stand-off Imagıng Systems Using Low Cost Plasma Detectors
Altan, Hakan (2018-11-09)
Development of a high yield fabrication process for MEMS based resonant mass sensors for cell detection applications
Töral, Taylan Berkin; Külah, Haluk; Department of Micro and Nanotechnology (2014)
This thesis reports the development of a high yield fabrication flow for MEMS based resonant mass sensors for cell detection applications. The basic design is a gravimetric resonator for real-time electronic detection of captured cells through bioactivation on gold coated active area which assures an antibody based cell capture inside a biocompatible microfluidic channel. The proposed design is demonstrated to have various advantages over its conventional counterparts. However, the yield of the previous fab...
Development of a resonant mass sensor for MEMS based cell detection applications
Eroğlu, Deniz; Külah, Haluk; Department of Electrical and Electronics Engineering (2012)
This thesis reports design and implementation of a MEMS based resonant mass sensor for cell detection applications. The main objective of the thesis is the real-time detection of captured cells inside liquid medium and obtaining the detection results by electronic means, without the aid of any external optical instruments. A new resonant mass sensor architecture is presented that has various advantages over its conventional counterparts. The device oscillates in the lateral direction, eliminating squeeze fi...
Development of a parylene bonding based fabrication method for MEMS gravimetric resonant based mass sensors
Gökçe, Furkan; Külah, Haluk; Department of Electrical and Electronics Engineering (2017)
This thesis reports development of a parylene bonding based fabrication method for MEMS gravimetric resonant based mass sensors that are integrated with microfluidics for real-time detection when there is a liquid flow through the microfluidic channels. Parylene bonding has been optimized by conducting several bare bonding experiments. The optimized bonding takes place at 250ºC, in vacuum (1 mTorr) and with 2000 N of vertical piston force for 1 hour. The average shear bonding strength is 15.58 MPa for the o...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. AKBAR, H. Altan, M. Ribeiro, A. B. ŞAHİN, C. Kuşoğlu Sarıkaya, and J. P. Pavia,
Development of Stand-Off Imaging Systems Using Low Cost Plasma Detectors That Work in the GHz to THz Range
. 2021.