Electrically Conducting Fluid Flow and Electric Potential in a Square Cavity Subjected to a Point Magnetic Source

2022-01-01
Şenel, Pelin
Tezer, Münevver
Magnetohydrodynamics (MHD) flow in cavities subjected to both the magnetisation and the Lorentz forces due to a point magnetic source is studied. The governing PDEs are derived and iteratively solved by the dual reciprocity boundary elements method (DRBEM) with linear elements. It is shown that the magnetic field decelerates the axial flow around the point magnetic source, and a further increase in Ha causes a reverse flow in the pipe axis direction. An increase in Re, Ha, or Mn reduces the electric potential in magnitude. The planar velocity values decrease at the same rate as the Re increment. The influence of the magnetisation force lessens in high Re cases without alternating the axial velocity and the electric potential within the pipe. This study is the first to give the effects of both the magnetisation and the Lorentz forces on the fluid behaviour in terms of velocity, pressure, and electric potential.
International Journal of Computational Fluid Dynamics

Suggestions

Numerical solution of buoyancy MHD flow with magnetic potential
Pekmen, B.; Tezer, Münevver (2014-04-01)
In this study, dual reciprocity boundary element method (DRBEM) is applied for solving the unsteady flow of a viscous, incompressible, electrically conducting fluid in channels under the effect of an externally applied magnetic field and buoyancy force. Magnetohydrodynamics (MHD) equations are coupled with the energy equation due to the heat transfer by means of the Boussinessq approximation. Then, the 20 non-dimensional full MHD equations in terms of stream function, temperature, magnetic potential, curren...
Tight binding investigation of graphene nanostructures under magnetic field
Yalçın, Fırat; Toffoli, Hande; Department of Physics (2019)
Electrons moving under the effects of a two dimensional periodic potential and a magnetic field perpendicular to this two dimensional plane has been the focus of many different studies for a long time. The interplay between the two length scales in this problem, lattice constant and the characteristic magnetic length, results in interesting phenomena such as the Hofstadter's butterfly. The bulk of the studies done so far has focused on uniform magnetic fields. The only requirement for the vector potential i...
Electrical resistivities of liquid Li-Sn and Na-Pb alloys
Khajil, T. M. A.; Tomak, Mehmet (American Physical Society (APS), 1988-06-01)
The resistivity of liquid Li-Sn and Na-Pb alloys is calculated using the theory of ‘‘2 k F ’’ scattering theory recently developed by Morgan et al. The partial structure factors are described by the mean-spherical approximation for a system of hard spheres with Yukawa tails. The calculated resistivity values are in very good agreement with experiment. The improvement over the widely used Faber-Ziman formalism is impressive.
Finite mean free paths and the electrical resistivity of liquid simple metals and binary alloys
Khajil, T. M. A.; Daver, Fugen; Tomak, Mehmet (Wiley, 1986-11-1)
The finite mean‐free‐path correction to the Ziman formalism of the resistivity for liquid metals and some binary alloys are calculated using the Ferraz‐March approach.
Temperature-Induced Activation of Graphite Co-intercalation Reactions for Glymes and Crown Ethers in Sodium-Ion Batteries
Goktas, Mustafa; Akduman, Baris; Huang, Peihua; Balducci, Andrea; Adelhelm, Philipp (American Chemical Society (ACS), 2018-11-29)
The intercalation of solvated ions into graphite leads to ternary graphite intercalation compounds (t-GICs). Here, we study the impact of temperature on the electro-chemical activity of graphite electrodes for co-intercalation reactions between 20 and 80 degrees C in sodium cells. For this, a range of linear ethers (mono-, di-, tri-, and tetraglyme) are studied. For the first time, pentaglyme and several crown ethers are also investigated. We find that several solvents that appear as unsuitable for the co-i...
Citation Formats
P. Şenel and M. Tezer, “Electrically Conducting Fluid Flow and Electric Potential in a Square Cavity Subjected to a Point Magnetic Source,” International Journal of Computational Fluid Dynamics, vol. 36, no. 5, pp. 424–439, 2022, Accessed: 00, 2023. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85141354143&origin=inward.