Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Understanding IMF Decision-Making with Sentiment Analysis
Date
2022-01-01
Author
Deniz, Ayca
Angin, Merih
Angın, Pelin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
163
views
0
downloads
Cite This
With the advances in information technologies, the amount of available data on web sources where people express their opinions increases continually. Sentiment analysis is one of the effective tools for decision-makers to gain insights from massive heaps of data. The field of International Organizations, which produces big data in the form of large documents, has significant potential to benefit from sentiment analysis in decision-making. In this paper, we evaluate the effectiveness of different sentiment analysis tools in classifying the sentiments of the International Monetary Fund's (IMF) Executive Board members regarding the design of IMF programs. We introduce a novel dataset, Executive Board meeting minutes of the IMF, in which the sentences are labelled as positive, neutral, or negative. The experimental results demonstrate that sentiment classification with state-of-the-art language models yields high performance on this dataset when trained with domain-specific data.
Subject Keywords
binary classification
,
International Monetary Fund
,
sentiment analysis
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85138678458&origin=inward
https://hdl.handle.net/11511/101471
DOI
https://doi.org/10.1109/siu55565.2022.9864926
Conference Name
30th Signal Processing and Communications Applications Conference, SIU 2022
Collections
Department of Computer Engineering, Conference / Seminar
Suggestions
OpenMETU
Core
Context- and sentiment-aware machine learning models for sentiment analysis
Deniz Kızılöz, Firdevsi Ayça; Angın, Pelin; Angın, Merih; Department of Computer Engineering (2023-1-24)
With the advances in information technologies, the amount of available data on web sources where people express their opinions increases continually. Sentiment analysis supports decision-makers in gaining insights from massive heaps of data. It has gained much attraction recently as it has proven to be a practical tool in a wide range of areas, including monitoring public opinion. Nevertheless, sentiment analysis research is still facing some challenges. One of the main challenges is the irrelevant and redu...
A Similarity Based Oversampling Method for Multi-Label Imbalanced Text Data
Karaman, İsmail Hakkı; Köksal, Gülser; Erişkin, Levent; Department of Industrial Engineering (2022-9-1)
In the real world, while the amount of data increases, it is not easy to find labeled data for Machine Learning projects, because of the compelling cost and effort requirements for labeling data. Also, most Machine Learning projects, especially multi-label classification problems, struggle with the data imbalance problem. In these problems, some classes, even, do not have enough data to train a classifier. In this study, an over sampling method for multi-label text classification problems is developed and s...
Investigating sentimental relation between social media presence and academic success of Turkish Universities
Gunduz, Sedef; Demirhan, Fatih; SAĞIROĞLU, Şeref (2014-12-06)
In this study an approach that uses social networking data for developing sentiment analysis system is proposed. With the help of developed software, it is tried to find out whether there is any relation between universities' academic success and sentiment of the public about them in social media. After collecting enough text based data from Twitter, preprocessing of data is carried out and final data is trained by means of Naive Bayes Classifier. After testing process, experimental results have shown that ...
Using tag similarity in SVD-based recommendation systems
Osmanli, Osman Nuri; Toroslu, İsmail Hakkı (2011-12-01)
Data analysis has become a very important area for both companies and researchers as a consequence of the technological developments in recent years. Companies are trying to increase their profit by analyzing the existing data about their customers and making decisions for the future according to the results of these analyses. Parallel to the need of companies, researchers are investigating different methodologies to analyze data more accurately with high performance. In this paper, we adopted free-formatte...
Optimization of an online course with web usage mining
Akman, LE; Akkan, B; Baykal, Nazife (2004-02-18)
The huge amount of information existing in the World Wide Web constitutes an ideal environment to implement data mining techniques. Web mining is the mining of web data. There are different applications of web mining: web content mining, web structure mining and web usage mining. In our study we analyzed an online course by web usage mining techniques in order to optimize the navigation paths, the duration of the time spend on each page and the number of visits throughout the semester of the course. Moreove...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Deniz, M. Angin, and P. Angın, “Understanding IMF Decision-Making with Sentiment Analysis,” presented at the 30th Signal Processing and Communications Applications Conference, SIU 2022, Safranbolu, Türkiye, 2022, Accessed: 00, 2023. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85138678458&origin=inward.