High carrier lifetimes in UMG multicrystalline wafers after P- diffusion compatible with high-efficiency cell structures

Download
2023-1-01
Dasilva-Villanueva, N.
Arikan, B.
Canar, H. H.
Fuertes Marron, D.
Hong, B.
Kececi, A. E.
Butuner, S. K.
Bektas, G.
Turan, Raşit
del Canizo, C.
High-quality multicrystalline Upgraded Metallurgical Grade Silicon (UMG-Si) offers significant advantages over conventional polysilicon-based PV technology, associated to lower energy budget. The aim of this study is twofold: on the one hand, to ascertain the efficiency potential of solar cells based on this material in terms of carrier lifetime; and on the other hand, to explore the adoption of high-efficiency cell architectures by establishing an effective rear-side passivation scheme for the implementation of passivated emitter rear contact (PERC) devices. The carrier lifetime and the surface passivation efficacy are investigated for different passivating layer configurations after single and double P-diffusion gettering processes. Layer stacks consisting of Al2O3, SiOxNy and a-SiNx:H capping overlayers have been optimized, on industrial size, saw-damage-etched UMG wafers and results compared to those obtained using reference iodine-ethanol (IE) passivation. Diagnosis based on minority carrier lifetime and implied V-oc (iV(oc)) measurements helped monitor the impact of parameter optimization on wafer quality, particularly after firing processes. Carrier lifetimes over 600 mu s at Delta n = 10(15) cm(-3) injection level as well as up to 790 mu s locally have been measured in UMG-Si wafers passivated with IE after a Phosphorus Diffusion Gettering (PDG), demonstrating the suitability of the material for high-efficiency cell architectures. Values higher than 300 mu s have been obtained with Al2O3-based passivation layers for gettered UMG wafers, with implied V-oc values up to 710 mV. These record-breaking lifetimes and iV(oc) figures obtained with p-type multicrystalline UMG-Si material demonstrate a significant upgrading of its electronic quality by means of industry-scalable technical processes.
SOLAR ENERGY MATERIALS AND SOLAR CELLS

Suggestions

Improvement of silicon heterojunction solar cell performance with new surface structure and wide band gap carrier selective layers
Dönerçark, Ergi; Turan, Raşit; Yerci, Selçuk; Department of Micro and Nanotechnology (2021-10-15)
The photovoltaic (PV) industry is dominated by silicon-based solar cells owing to the abundance of silicon and its full-fledged technology. The main road for the PV industry points out to enhance the conversion efficiency of solar cells while decreasing production costs, which is crucial for improving renewable energy market share. The silicon heterojunction solar cells (SHJ) are receiving attention on this road map due to their higher conversion efficiencies, simple process flow, and low-temperature fabric...
Improvement of light emission from Tb-doped Si-based MOS-LED using excess Si in the oxide layer
Kulakci, Mustafa; Turan, Raşit (2013-05-01)
The fabrication of efficient silicon-based Light Emitting Devices (LEDs) is extremely important for the integration of photonic and electronic components on the same Si platform. In this paper, we report on the room temperature electroluminescence properties of Tb-doped MOS-LED devices with an active layer of SiO2 and Si-rich SiOx produced using the magnetron co-sputtering technique. The electroluminescence properties of both types of devices were studied as a function of processing conditions and material ...
High data rate X-band transmitter for low Earth orbit satellites
Sunay, Hacer K.; Ismailoglu, Neslin; Kirilmaz, Tunahan; Dudak, Celal; Sen, Ozlem A. (2007-04-26)
Main purpose of this study is to design a transmitter with data rates up to 100 Mbps, having QPSK/OQPSK modulation and 7 W (38.5 dBm) output power at 8.2 GHz. This output power satisfies the link budget for a low earth orbit (LEO) satellite at 700 km, utilizing required source-channel coding schemes in baseband for a BER performance of 10(-6). The modulation scheme of the transmitter can be selected as BPSK, QPSK or OQPSK. In addition to QPSK/OQPSK modulation scheme choice, the transmitter will have three d...
OPTIMIZATION OF SILICON-OXYNITRIDE THIN FILMS FOR CRYSTALLINE SILICON (C-Si) PERC CELL
Canar, Hasan Hüseyin; Turan, Raşit; Erçelebi, Ayşe Çiğdem; Department of Physics (2022-6)
PECVD deposited SiNx has been used in PV industry especially for PERC solar cell as anti-reflection coating (ARC) and passivating layer [1]. However, its limited optical and electrical properties create a barrier for achieving higher solar cell efficiencies. For that reason, an alternative is introduced that is SiOxNy thin film with adjustable refractive index can be tuned as low as SiO2 [2]. In this thesis, deposited SiNx and SiOxNy films were characterized by various measurement methods such as SE, FTIR,...
Enhanced Passivation Properties of a-Si:H and Reactive ITO Sputtering for SHJ Solar Cells
Donercark, Ergi; Guler, Secil; Çiftpınar, Emine Hande; Kabacelik, Ismail; Turan, Raşit (2020-01-01)
Enhancement of the conversion efficiency of silicon solar cells is crucial for the improvement of renewable electricity resources. The device properties such as minority carrier lifetime, series resistance, contact resistance and optical properties should be improved simultaneously to achieve higher photo conversion efficiencies. We use industry compatible processes flow to fabricate large-area silicon heterojunction (SHJ) solar cells combined with reactive ITO sputtering. The passivation properties of a-Si...
Citation Formats
N. Dasilva-Villanueva et al., “High carrier lifetimes in UMG multicrystalline wafers after P- diffusion compatible with high-efficiency cell structures,” SOLAR ENERGY MATERIALS AND SOLAR CELLS, vol. 250, pp. 0–0, 2023, Accessed: 00, 2023. [Online]. Available: https://hdl.handle.net/11511/101828.