Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Improvement of light emission from Tb-doped Si-based MOS-LED using excess Si in the oxide layer
Date
2013-05-01
Author
Kulakci, Mustafa
Turan, Raşit
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
241
views
0
downloads
Cite This
The fabrication of efficient silicon-based Light Emitting Devices (LEDs) is extremely important for the integration of photonic and electronic components on the same Si platform. In this paper, we report on the room temperature electroluminescence properties of Tb-doped MOS-LED devices with an active layer of SiO2 and Si-rich SiOx produced using the magnetron co-sputtering technique. The electroluminescence properties of both types of devices were studied as a function of processing conditions and material properties. A clear Tb3+ electroluminescence signal from the D-5(4)-> F-7(j) transitions has been observed without any parasitic defect emissions from the active layer hosting the Tb3+ ions. We have shown that the incorporation of excess Si into the active layer significantly enhances the electroluminescence signal, which lowers the turn on voltage below 10 V and is crucially important for meeting the low-power requirements for integrated circuit applications. We also addressed some of the fundamental questions concerning the light generation mechanisms in the Tb-doped system.
Subject Keywords
MOS-LED
,
Electroluminescence
,
Silicon
,
Rare earth
URI
https://hdl.handle.net/11511/42330
Journal
JOURNAL OF LUMINESCENCE
DOI
https://doi.org/10.1016/j.jlumin.2012.11.005
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Femtosecond laser written waveguides deep inside silicon
Pavlov, Ihor; Pavlova, S.; Kadan, V.; Makey, G.; Turnali, A.; Yavuz, O.; Ilday, F. O. (2017-08-01)
Photonic devices that can guide, transfer, or modulate light are highly desired in electronics and integrated silicon (Si) photonics. Here, we demonstrate for the first time, to the best of our knowledge, the creation of optical waveguides deep inside Si using femtosecond pulses at a central wavelength of 1.5 mu m. To this end, we use 350 fs long, 2 mu J pulses with a repetition rate of 250 kHz from an Er-doped fiber laser, which we focused inside Si to create permanent modifications of the crystal. The pos...
IMPLEMENTATION OF STRONG LIGHT-MATTER INTERACTION FOR FABRICATION AND LIGHT MANAGEMENT OF THIN CRYSTAL SILICON SOLAR CELLS
Zolfaghari Borra, Mona; Bek, Alpan; Ünalan, Hüsnü Emrah; Department of Micro and Nanotechnology (2021-7-29)
The integration of photonic components with electrical elements on the same silicon chip may lead to the development of new technologies. One limitation is the space available on the wafer surface, which is restricted. Currently, conventional fabrication techniques produce devices only on the top thin layer of the wafer surface. As a result, new architectural designs are required. Producing functional components deep inside Si without creating damage to the surfaces is a potential technique for overcoming t...
Fabrication of thin crystalline silicon solar cells with advanced light trapping
Hadibrata, Wisnu; Yerci, Selçuk; Turan, Raşit; Department of Micro and Nanotechnology (2017)
Thin crystalline silicon (c-Si) solar cells with thickness in the order of few tens of microns offer many attractive applications, such as, electronic wearables, space probes and satellites thanks to their flexibility and light-weight character. However, reducing the thickness of active layer of silicon solar cells leads to poor light absorption within the silicon layer, especially in the near infrared region of the solar spectrum. The poor absorption becomes problematic for thin c-Si solar cells as it caus...
Design and implementation of a sic based three phase grid-connected current source inverter for solar applications
Bay, Olcay; Ermiş, Muammer; Bilgin, Hazım Faruk; Department of Electrical and Electronics Engineering (2017)
In this thesis, analysis, design and implementation of a three-phase 400V, 20 kVA Current Source Inverter (CSI) have been carried out for grid-connected photovoltaic applications based on the multi-string inverter concept. This inverter can be used in large scale photovoltaic (PV) applications by connecting many in parallel at 400V and coupling to medium voltage through a common transformer. The power stage of the inverter is based on the basic full-bridge CSC topology and each power semiconductor which mus...
Analysis of boron doped hydrogenated amorphous silicon carbide thin film for silicon heterojunction solar cells
Salimi, Arghavan; Turan, Raşit; Department of Micro and Nanotechnology (2019)
Silicon based solar cells are the dominant type of solar cells in the photovoltaic industry. Recently, there have been increasing efforts to develop c-Si solar cells with higher efficiency and lower cost. Among them, silicon heterojunction solar cell (SHJ) is attracting much attention because of its superior performance values demonstrated at both R&D and industrial levels. One of the common limiting criteria is the recombination at the front side which can be solved by providing proper passivation at the f...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. Kulakci and R. Turan, “Improvement of light emission from Tb-doped Si-based MOS-LED using excess Si in the oxide layer,”
JOURNAL OF LUMINESCENCE
, pp. 37–42, 2013, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/42330.