Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Computation of flow over vertically curved channels
Download
035525.pdf
Date
1994
Author
İlhan, Mehmet Hakan
Metadata
Show full item record
Item Usage Stats
97
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/10220
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Computation of external flow around rotating bodies
Gönç, L. Oktay; Aksel, Mehmet Haluk; Department of Mechanical Engineering (2005)
A three-dimensional, parallel, finite volume solver which uses Roe's upwind flux differencing scheme for spatial and Runge-Kutta explicit multistage time stepping scheme for temporal discretization on unstructured meshes is developed for the unsteady solution of external viscous flow around rotating bodies. The main aim of this study is to evaluate the aerodynamic dynamic stability derivative coefficients for rotating missile configurations. Arbitrary Lagrangian Eulerian (ALE) formulation is adapted to the ...
Computation of viscous flows over flapping airfoils and parallel optimization of flapping parameters
Kaya, Mustafa; Tuncer, İsmail Hakkı; Department of Aerospace Engineering (2003)
Computation of Discharge and Critical Depth in Compound Channels
Tokyay, Nuray (1994-03-25)
Computation of drag force on single and close-following vehicles
Örselli, Erdem; Çetinkaya, Tahsin Ali; Department of Mechanical Engineering (2006)
In this study, application of computational fluid dynamics to ground vehicle aerodynamics was investigated. Two types of vehicle models namely, Ahmed Body and MIRA Notchback Body and their scaled models were used. A commercial software "Fluent" was used and the effects of implementing different turbulence models with wall functions were observed. As a result, an appropriate turbulence model was selected to use in the study. The drag forces, surface pressure distributions and wake formations were investigate...
Computation of radar cross sections of complex targets by shooting and bouncing ray method
Özgün, Salim; Kuzuoğlu, Mustafa; Department of Electrical and Electronics Engineering (2009)
In this study, a MATLAB® code based on the Shooting and Bouncing Ray (SBR) algorithm is developed to compute the Radar Cross Section (RCS) of complex targets. SBR is based on ray tracing and combine Geometric Optics (GO) and Physical Optics (PO) approaches to compute the RCS of arbitrary scatterers. The presented algorithm is examined in two parts; the first part addresses a new aperture selection strategy named as “conformal aperture”, which is proposed and formulated to increase the performance of the cod...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. H. İlhan, “Computation of flow over vertically curved channels,” Middle East Technical University, 1994.