Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Computational design of nanoantennas with improved power enhancement capabilities via shape optimization
Date
2023-01-01
Author
Işiklar, Göktuǧ
Yazar, Şirin
İbili, Hande
Onay, Gülten
El Ahdab, Zeina
Ergül, Özgür Salih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
179
views
0
downloads
Cite This
Computational design and analyses of nanoantennas obtained via surface shape optimization are presented. Starting with a kernel geometry, free deformations are applied on selected surfaces to reach optimal designs that can provide improved power enhancement capabilities at desired frequencies. An in-house implementation of genetic algorithms is efficiently combined with the multilevel fast multipole algorithm developed for accurate solutions of plasmonic problems to construct the effective optimization environment. The geometries obtained via optimization do not only represent optimal shapes within the allowed deformation limits but also reveal certain types of modifications on kernel geometries to improve their performances.
Subject Keywords
genetic algorithms
,
multilevel fast multipole algorithm
,
nanoantennas
,
optimization
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85147606238&origin=inward
https://hdl.handle.net/11511/102248
Journal
Optical Engineering
DOI
https://doi.org/10.1117/1.oe.62.1.015107
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Computational Design of Optical Couplers for Bended Nanowire Transmission Lines
Tuncyurek, Yunus Emre; Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2017-07-01)
We present computational analysis, optimization, and design of optical couplers that can be useful to improve the transmission along bended nanowires. After demonstrating the deteriorated energy transmission due to sharp bends, which lead to out-of-phase nanowires and diffraction, we use a rigorous simulation environment to design efficient couplers made of spherical particles. For this purpose, an optimization module based on genetic algorithms is combined with the multilevel fast multipole algorithm, lead...
Rigorous Analysis of Deformed Nanowires Using the Multilevel Fast Multipole Algorithm
Karaosmanoglu, Bariscan; Yilmaz, Akif; Ergül, Özgür Salih (2015-05-17)
We present accurate full-wave analysis of deformed nanowires using a rigorous simulation environment based on the multilevel fast multipole algorithm. Single nanowires as well as their arrays are deformed randomly in order to understand the effects of deformations to scattering characteristics of these structures. Results of hundreds of simulations are considered for statistically meaningful analysis of deformation effects. We show that deformations significantly enhance the forward-scattering abilities of ...
Efficient and Accurate Electromagnetic Optimizations Based on Approximate Forms of the Multilevel Fast Multipole Algorithm
Onol, Can; Karaosmanoglu, Bariscan; Ergül, Özgür Salih (2016-01-01)
We present electromagnetic optimizations by heuristic algorithms supported by approximate forms of the multilevel fast multipole algorithm (MLFMA). Optimizations of complex structures, such as antennas, are performed by considering each trial as an electromagnetic problem that can be analyzed via MLFMA and its approximate forms. A dynamic accuracy control is utilized in order to increase the efficiency of optimizations. Specifically, in the proposed scheme, the accuracy is used as a parameter of the optimiz...
Design and optimization of nanooptical couplers based on photonic crystals involving dielectric rods of varying lengths
Yazar, Şirin; Ergül, Özgür Salih (2022-1-01)
This study presents design and optimization of compact and efficient nanooptical couplers involving photonic crystals. Nanooptical couplers that have single and double input ports are designed to obtain efficient transmission of electromagnetic waves in desired directions. In addition, these nanooptical couplers are cascaded by adding one after another to realize electromagnetic transmission systems. In the design and optimization of all these nanooptical couplers, the multilevel fast multipole algorithm, w...
Optimization of nanoparticle arrays to design efficient couplers for plasmonic nanowire networks
Altınoklu, Aşkın; Ergül, Özgür Salih; Department of Electrical and Electronics Engineering (2019)
In this thesis, a novel optimization strategy for design and optimization of efficient couplers to improve nano-optical links in complex plasmonic nanowire networks is presented. Various cases involving alternative combinations of nanowire transmission lines with different types and lengths are considered. As the optimization environment, a full-wave solver based on surface integral equations and the multilevel fast multipole algorithm (MLFMA) developed for efficient and accurate solutions of plasmonic prob...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Işiklar, Ş. Yazar, H. İbili, G. Onay, Z. El Ahdab, and Ö. S. Ergül, “Computational design of nanoantennas with improved power enhancement capabilities via shape optimization,”
Optical Engineering
, vol. 62, no. 1, pp. 0–0, 2023, Accessed: 00, 2023. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85147606238&origin=inward.