Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Computational Design of Optical Couplers for Bended Nanowire Transmission Lines
Date
2017-07-01
Author
Tuncyurek, Yunus Emre
Karaosmanoglu, Bariscan
Ergül, Özgür Salih
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
34
views
0
downloads
Cite This
We present computational analysis, optimization, and design of optical couplers that can be useful to improve the transmission along bended nanowires. After demonstrating the deteriorated energy transmission due to sharp bends, which lead to out-of-phase nanowires and diffraction, we use a rigorous simulation environment to design efficient couplers made of spherical particles. For this purpose, an optimization module based on genetic algorithms is combined with the multilevel fast multipole algorithm, leading to a full-wave environment for precise designs of couplers. Numerical examples involving silver nanowires are presented to demonstrate the effectiveness of the optimization mechanism.
Subject Keywords
Genetic algorithms
,
Multilevel fast multipole algorithm
,
Nanowires
,
Optical couplers
,
Surface integral equations
URI
https://hdl.handle.net/11511/53153
Journal
APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL
Collections
Department of Electrical and Electronics Engineering, Article
Suggestions
OpenMETU
Core
Design and optimization of nano-optical couplers for controlling transmission between electrically isolated nanowires
Karaova, Gokhan; Tahan, Utku; Atmaz, Tuna; Ergül, Özgür Salih (2019-09-01)
© 2019 IEEE.We present design, optimization, and simulation of effective nano-optical couplers to control power transmission in nanowire networks. The couplers consist of careful arrangements of nanoparticles that are designed in an optimization environment based on genetic algorithms and a full-wave solver. The nanowire segments are electrically isolated from each other, leading to more reconfigurable and adaptable systems. We show that, even in the absence of direct contacts between nanowires, high-perfor...
Rigorous Analysis of Double-Negative Materials with the Multilevel Fast Multipole Algorithm
Ergül, Özgür Salih (2012-02-01)
We present rigorous analysis of double-negative materials (DNMs) with surface integral equations and the multilevel fast multipole algorithm (MLFMA). Accuracy and efficiency of numerical solutions are investigated when DNMs are formulated with two recently developed formulations, i.e., the combined tangential formulation (CTF) and the electric and magnetic current combined-field integral equation (JMCHE). Simulation results on canonical objects are consistent with previous results in the literature on ordin...
Computational Design and Analysis of Efficient Couplers for Nano-optical Links
Altinoklu, A.; Ergül, Özgür Salih (2019-01-01)
We present rigorous optimization and design of efficient couplers to improve optical transmission along nanowires. It is well-known that nanowires are excellent tools to transmit electromagnetic power in nano-optical systems, while couplers become inevitable at critical locations, particularly in input/output regions and at corners if nanowires are bended. We use genetic algorithms supported by fast full-wave solutions to efficiently and accurately obtain effective couplers in alternative scenarios. The des...
Full-Wave Computational Analysis of Optical Chiral Metamaterials
Guler, Sadri; Solak, Birol; Gür, Uğur Meriç; Ergül, Özgür Salih (2017-09-27)
We present computational analysis of optical chiral metamaterials that consist of helical metallic elements. At optical frequencies, metals are modeled as penetrable objects with plasmonic properties. A rigorous implementation based on boundary element methods and the multilevel fast multipole algorithm is used for efficient and accurate analysis of three-dimensional structures. Numerical results demonstrate interesting polarization-rotating characteristics of such arrays with helical elements, as well as t...
Parallel-MLFMA Solutions of Large-Scale Problems Involving Composite Objects
Ergül, Özgür Salih (2012-07-14)
We present a parallel implementation of the multilevel fast multipole algorithm (MLFMA) for fast and accurate solutions of large-scale electromagnetics problems involving composite objects with dielectric and metallic parts. Problems are formulated with the electric and magnetic current combined-field integral equation (JMCFIE) and solved iteratively with MLFMA on distributed-memory architectures. Numerical examples involving canonical and complicated objects, such as optical metamaterials, are presented to...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. E. Tuncyurek, B. Karaosmanoglu, and Ö. S. Ergül, “Computational Design of Optical Couplers for Bended Nanowire Transmission Lines,”
APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY JOURNAL
, pp. 562–568, 2017, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53153.