Scheduling a dual gripper material handling robot with energy considerations

2023-04-01
Gürel, Sinan
Gultekin, Hakan
Emiroglu, Nurdan
Robotic cells are serial production systems that consist of a number of machines and a material handling robot that transfers parts between the machines. Energy consumption of a robot during its move between two machines can be decreased by carefully selecting its speed. This paper presents models and algorithms that make robot speed and robot activity sequencing decisions together for a dual-gripper robot that can handle two parts simultaneously. We consider both robot energy consumption and cycle time objectives so that a decision maker can observe the trade off between energy cost and throughput rate of the system, and select the best solution among alternatives. Computational experiments demonstrate that proposed approaches can generate efficient solutions for practical size instances, and speed control can significantly conserve energy.
JOURNAL OF MANUFACTURING SYSTEMS

Suggestions

Scheduling in two-machine robotic cells with a self-buffered robot
Gündoğdu, Emine; GÜLTEKİN, HAKAN (2016-02-01)
This study considers a production cell consisting of two machines and a material handling robot. The robot has a buffer space that moves with it. Identical parts are to be produced repetitively in this flowshop environment. The problem is to determine the cyclic schedule of the robot moves that maximizes the throughput rate. After developing the necessary framework to analyze such cells, we separately consider the single-, double-, and infinite-capacity buffer cases. For single- and double-capacity cases, c...
Cyclic scheduling of parts and robot moves in m-machine robotic cells
GÜLTEKİN, HAKAN; Coban, Betul; Akhlaghi, Vahid Eghbal (Elsevier BV, 2018-02-01)
We consider a flow shop type manufacturing cell consisting of m machines and a material handling robot producing multiple parts. The robot transfers the parts between the machines and loads/unloads the machines. We consider the cyclic scheduling of the parts and the robot moves with the objective of maximizing the throughput rate. We develop a mixed integer linear programming formulation of the problem. The formulation is improved with several valid inequalities and reformulations of the constraints. We als...
Considering manufacturing cost and scheduling performance on a CNC turning machine
Gürel, Sinan (Elsevier BV, 2007-02-16)
A well known industry application that allows controllable processing times is the manufacturing operations on CNC machines. For each turning operation as an example, there is a nonlinear relationship between the manufacturing cost and its required processing time on a CNC turning machine. If we consider total manufacturing cost (F-1) and total weighted completion time (F-2) objectives simultaneously on a single CNC machine, making appropriate processing time decisions is as critical as making job sequencin...
Precise external positioning of machine tools using angular measurements from digital cameras
OKAY, İLKİN EGE; Koku, Ahmet Buğra; Durmaz, Murat; Department of Mechanical Engineering (2022-6-09)
Nowadays, robot arms are highly available for industrial applications such as welding and automation. The major problem is the inaccuracy at tip position of the robot arm due to several structural effects. This thesis aims to increase the positioning accuracy of robot arm tip position by developing an external positioning method via angular measurement from digital cameras. Two gimbal systems are configured as the steering system of cameras. Each gimbal provides the angular position of the target in real-ti...
Design software development for induction motors
İzgüden, Mustafa; Ertan, Hulusi Bülent; Department of Electrical and Electronics Engineering (2011)
The purpose of this thesis has been to convert two softwares called TPCAD (Three Phase Induction Machine Computer Aided Desing) and SPCAD (Single Phase Induction Machine Computer Aided Design) developed earlier for the design and analysis of three and single phase induction machines to meet the needs of motor manufacturing industry so that they can be run in windows environment. Furthermore, it was aimed to include features such as double cage motor analysis and design, to provide a facility designed motor ...
Citation Formats
S. Gürel, H. Gultekin, and N. Emiroglu, “Scheduling a dual gripper material handling robot with energy considerations,” JOURNAL OF MANUFACTURING SYSTEMS, vol. 67, pp. 265–280, 2023, Accessed: 00, 2023. [Online]. Available: https://hdl.handle.net/11511/102373.