Compensation of Model Errors in Electrocardiographic Imaging Using Bayesian Estimation

2021-01-01
Bayesian Maximum a Posteriori (MAP) estimation has been successfully applied to electrocardiographic imaging (ECGI). However, in most studies, MAP deals only with the measurement noise and ignores the forward model errors. In this study, we incorporated model uncertainty in the MAP formulation to improve the inverse reconstructions. Measured electrograms (EGM) from the University of Utah were used to form training and test datasets. Body surface potential (BSP) measurements were simulated at 30 dB SNR. The inverse problem was solved using MAP estimation. The training dataset was used to define the prior probability function (pdf). Both the measurement noise and model error were assumed to be uncorrelated with the EGMs. Model error was introduced as shift in the heart position and scaling of the heart size. Three model error pdfs were considered: no compensation (model error is assumed as zero in the solution); model error is modeled as independent and identically distributed (IID) and correlated across leads (CORR). For IID and CORR, pdf was estimated based on all geometry disturbances. Results were evaluated using spatial (sCC) and temporal (tCC) correlation coefficients. These results showed that including model errors in the MAP formulation, even in a simple form such as the IID, improved the reconstructions over ignoring them.
2021 Computing in Cardiology, CinC 2021

Suggestions

Uniform and Non-Uniform V-shaped Arrays for 2-D DOA Estimation
Filik, Tansu; Tuncer, Temel Engin; Yasar, T. Kaya (2008-04-22)
In this study, a new method for optimum design of uniform and non-uniform V-shaped arrays is presented for azimuth and elevation angle estimation. The proposed design method finds an optimum angle between the linear sub-arrays of the V-array by using the Cramer-Rao Bound (CRB) where statistical coupling effect between azimuth and elevation angle estimation is considered This method can be used to obtain directional and isotropic angle performances for uniform and non-uniform V-arrays. For non-uniform isotro...
Continuous-time nonlinear estimation filters using UKF-aided gaussian sum representations
Gökçe, Murat; Kuzuoğlu, Mustafa; Department of Electrical and Electronics Engineering (2014)
A nonlinear filtering method is developed for continuous-time nonlinear systems with observations/measurements carried out in discrete-time by means of UKFaided Gaussian sum representations. The time evolution of the probability density function (pdf) of the state variables (or the a priori pdf) is approximated by solving the Fokker-Planck equation numerically using Euler’s method. At every Euler step, the values of the a priori pdf are evaluated at deterministic sample points. These values are used with Ga...
Remesh-Free Shape Optimization by Transformation Optics
ÖZGÜN, ÖZLEM; Kuzuoğlu, Mustafa (2016-12-01)
A remesh-free numerical method is developed for shape optimization problem by combining the transformation optics approach, the finite element method, and the genetic optimization algorithm. To overcome cumbersome remeshing processes, transformation media are designed within the elements where the contour of the object passes. A simple rectangular mesh is used and only the material parameters of the media are redefined according to the scatterer contour that is represented by B-spline curves. The proposed a...
Unstructured grid generation and a simple triangulation algorithm for arbitrary 2-D geometries using object oriented programming
Karamete, BK; Tokdemir, Turgut; Ger, M (Wiley, 1997-01-30)
This paper describes the logic of a dynamic algorithm for a general 2D Delaunay triangulation of arbitrarily prescribed interior and boundary nodes. The complexity of the geometry is completely arbitrary. The scheme is free of specific restrictions on the input of the geometrical data. The scheme generates triangles whose associated circumcircles contain 'no nodal points except their vertices. There is no predefined limit for the number of points and the boundaries. The direction of generation of the triang...
Wavelet domain image resolution enhancement using cycle spinning and edge modelling
Temizel, Alptekin (2005-09-08)
In this paper we present a wavelet domain image resolution en-hancement algorithm. An initial high-resolution approximation to the original image is obtained by means of zero-padding in the wavelet domain. This is further processed using the cycle-spinning methodology which reduces ringing. A critical element of the algo-rithm is the adoption of a simplified edge profile suitable for the description of edge degradations such as blurring due to loss of resolution. Linear regression using a minimal training s...
Citation Formats
F. Aldemir and Y. Serinağaoğlu Doğrusöz, “Compensation of Model Errors in Electrocardiographic Imaging Using Bayesian Estimation,” Brno, Çek Cumhuriyeti, 2021, vol. 2021-September, Accessed: 00, 2023. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85124741388&origin=inward.