Dynamic stress concentrations around a single fiber break in unidirectional composites: a 3D finite element analysis

2023-01-01
Mutlu, Çağlar
SABUNCUOĞLU, BARIŞ
Kadioglu, F Suat
Swolfs, Yentl
When a fiber break occurs in longitudinal tension of a unidirectional composite, dynamic stress concentrations arise, which can be different from the ones found considering only static loading. The current paper analyzes the dynamic stress concentration factors (SCF) around a fiber break in unidirectional carbon fiber/epoxy composites. 3D finite element models with random and hexagonal fiber distributions were analyzed to investigate the evolution of stress concentrations as a function of time and position. The results indicate that dynamic effects result in much higher SCFs with a larger effective area around the broken fiber. The increase of SCFs in the closest fibers was determined to be larger for lower fiber volume fractions due to the presence of dynamic effects. Similar to the static case, a lower volume fraction causes higher maximum dynamic SCF in random packings. Results also support the high prevalence of coplanar cluster breaks observed in the experiments.
Journal of Reinforced Plastics and Composites

Suggestions

Analysis of thermomechanical cyclic behavior of unidirectional metal matrix composites
Çöker, Demirkan; Nicholas, Theodore (1993-01-01)
An analytical tool is developed to determine the three-dimensional stress state in a unidirectional composite subjected to axial loading and changes in temperature. A finite difference method is used to analyze a representative volume element of the composite which consists of concentric cylinders. The constituents are assumed to be elastic-plastic materials having temperature dependent properties. An iterative technique using the Prandtl-Reuss flow rule to determine incremental plastic strains is implement...
Nonlinear static aeroelastic behavior of composite missile fin with interlaminar and intralaminar damage
Özkaya, Özge; Kayran, Altan; Department of Aerospace Engineering (2017)
Accurate prediction of the static aeroelastic behavior of the lifting surfaces is crucial since aeroelasticity triggers instabilities, changes the load distribution and affects the control effectiveness and thereby the overall performance of the aerospace structures. Composite structures are prone to failure either because of the defects which may occur inside the structure during the manufacturing or in service. Damages are both inherent and unavoidable in composite materials and some of them are hard to d...
Thermal fracture analysis of orthotropic functionally graded materials using an equivalent domain integral approach
Dağ, Serkan (2006-12-01)
A new computational method based on the equivalent domain integral (EDI) is developed for mode I fracture analysis of orthotropic functionally graded materials (FGMs) subjected to thermal stresses. By using the constitutive relations of plane orthotropic thermoelasticity, generalized definition of the J-integral is converted to an equivalent domain integral to calculate the thermal stress intensity factor. In the formulation of the EDI approach, all the required thermomechanical properties are assumed to ha...
Elastic-plastic deformation of a rotating solid disk of exponentially varying thickness
Eraslan, Ahmet Nedim (2002-07-01)
The elastic-plastic deformation of a rotating solid disk of variable thickness in exponential form is investigated using Tresca's yield criterion, its associated flow rule and linear strain hardening. An analytical solution is obtained and numerical results are presented for different values of the geometric parameters. In the limiting case of uniform thickness the solution reduces to Garner's solution.
Radial basis function and dual reciprocity boundary element solutions of fluid dynamics problems
Gürbüz, Merve; Tezer Sezgin, Münevver; Department of Mathematics (2017)
In this thesis, the two-dimensional, laminar steady or unsteady flow of a viscous, incompressible, electrically conducting fluid is considered in channels of several geometries under the impact of a uniform magnetic field with different orientations. Magnetohydrodynamic (MHD) flow governed by the hydrodynamic and electromagnetic equations is solved numerically with or without Stokes approximation and with or without magnetic induction due to the large or small values of Reynolds and magnetic Reynolds number...
Citation Formats
Ç. Mutlu, B. SABUNCUOĞLU, F. S. Kadioglu, and Y. Swolfs, “Dynamic stress concentrations around a single fiber break in unidirectional composites: a 3D finite element analysis,” Journal of Reinforced Plastics and Composites, pp. 0–0, 2023, Accessed: 00, 2023. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85145890890&origin=inward.