Polarized Rabi-coupled and spinor boson droplets

Download
2023-2-01
Self-bound quantum droplets form when the mean-field tendency of the gas to collapse is stabilized by the effectively repulsive beyond-mean-field fluctuations. The beyond-mean-field effects depend on Rabi frequency ωR and quadratic Zeeman effect q for the Rabi-coupled Bose mixtures and the spinor gases, respectively. For a quantum droplet, the effects of varying ωR and q have recently been examined only for unpolarized Rabi-coupled Bose mixtures and unpolarized spinor gases. In this paper, we theoretically explore the stability of the droplet phase for polarized Rabi-coupled Bose mixtures and polarized spinor gases. We calculate the beyond-mean-field corrections for both gases with polarized order parameters and obtain the phase diagram of the droplets on the parameter space of Rabi frequency ωR and detuning δ for Rabi-coupled mixtures and quadratic Zeeman energy q and linear Zeeman energy p for spinor gases. Finally, we highlight the similarities and differences between the two systems and discuss their experimental feasibility.
Physical Review A

Suggestions

Adsorption and dissociation of PH3 on SiGe(100) (2x1) surface
Turkmenoglu, Mustafa; Katırcıoğlu, Şenay (World Scientific Pub Co Pte Lt, 2008-06-01)
The most stable structures for the adsorption and dissociation of phosphine (PH3) on SiGe(100) (2 x 1) surface have been investigated by relative total energy calculations based on density functional theory. According to the optimization calculations, PH3 is adsorbed on the Si (down) and Ge (down) site of the Ge-Si and Ge-Ge dimers on SiGe surface, respectively. The PH2 and H products have been found to be thermodynamically favored in the dissociation path of PH3 on SiGe surface when the system is thermally...
Thermal stimulation of aqueous volumes contained in carbon nanotubes: Experiment and modeling
Yarin, AL; Güvenç Yazıcıoğlu, Almıla; Megaridis, CM (2005-01-01)
The dynamic response, as caused by thermal stimulation, of aqueous liquid attoliter volumes contained inside multiwall carbon nanotubes is investigated theoretically and experimentally. The experiments indicate an energetically driven mechanism responsible for the dynamic multiphase fluid behavior visualized under high resolution in the transmission electron microscope. The theoretical model is formulated using a continuum approach, which combines temperature-dependent diffusion with intermolecular interact...
Donor binding energies in GaAs quantum wells considering the band nonparabolicity effects and the wavefunction elongation
Aktas, S; Okan, SE; Erdogan, I; Akbas, H; Tomak, Mehmet (Elsevier BV, 2000-09-01)
The donor binding energies in finite GaAs/GaxAl1-As-x quantum wells have been calculated by considering the confinement of electrons, which increases as the well width increases. The variational solutions have been improved by using a two-parameter trial wavefunction, and by including the conduction band nonparabolicity. It is shown that the method used gives results in agreement with those obtained in the experiments on the effective mass and the donor binding energy, both of which are strongly dependent o...
Pseudospin symmetry solution of the Dirac equation with an angle-dependent potential
Berkdemir, Cueneyt; Sever, Ramazan (IOP Publishing, 2008-02-01)
The pseudospin symmetry solution of the Dirac equation for spin 1/2 particles moving within the Kratzer potential connected with an angle-dependent potential is investigated systematically. The Nikiforov-Uvarov method is used to solve the Dirac equation. All of the studies are performed for the exact pseudospin symmetry (SU2) case and also the exact spin symmetry case is given briefly in the appendix. Bound-state solutions are presented to discuss the contribution of the angle-dependent potential to the rel...
Polaron effects on the binding energy of a hydrogenic impurity in a semiconductor quantum well
Ercelebi, A; Sualp, G (IOP Publishing, 1987-11-30)
The polaron effect on the ground-state level of a hydrogenic impurity in a semiconductor quantum well is calculated as a function of the well thickness. The formulation is based on an extension of the strong-coupling polaron theory and covers the overall range of the electron-phonon coupling strength. It is observed that in a GaAs-based quantum structure the phonon-induced shift in the binding energy is smaller than that in the bulk case except for too narrow well sizes.
Citation Formats
T. A. Yoğurt, A. Keleş, and M. Ö. Oktel, “Polarized Rabi-coupled and spinor boson droplets,” Physical Review A, vol. 107, no. 2, pp. 0–0, 2023, Accessed: 00, 2023. [Online]. Available: https://hdl.handle.net/11511/102742.