Spectral domain and asymptotic formulations of cylindrical structures

Download
1996
Yıldız, Hayrullah

Suggestions

HAMILTON-JACOBI DYNAMICS FOR THE SOLUTION OF TIME-DEPENDENT QUANTUM PROBLEMS .2. WAVE-PACKET PROPAGATION IN 2-DIMENSIONAL, NONLINEARLY COUPLED OSCILLATORS - EXACT AND TIME-DEPENDENT SCF-SOLUTIONS
GUNKEL, T; BAR, HJ; ENGEL, M; YURTSEVER, E; BRICKMANN, J (1994-12-01)
Methods for the approximate numerical integration of the time dependent Schrodinger equation with given initial conditions (the initial wave packet) are presented. The methods are based on the Schrodinger representation of the quantum dynamic system. The quantum dynamic equations are transformed into Hamilton-Jacobi type equations of motion as they occur in multi particle classical dynamics, i.e. standard techniques in molecular dynamics can be applied for the integration. The dynamics of minimum uncerta...
Quantum systems and representation theorem
Dosi, Anar (2013-09-01)
In this paper we investigate quantum systems which are locally convex versions of abstract operator systems. Our approach is based on the duality theory for unital quantum cones. We prove the unital bipolar theorem and provide a representation theorem for a quantum system being represented as a quantum -system.
Wave propagation in random elastic media.
Karaesmen, Engin; Gürpınar, Aybars; Department of Engineering Sciences (1976)
Transient wave propagation in anisotropic multilayered media
Mesutgil, Serdar; Turhan, Doğan; Department of Engineering Sciences (2003)
QUANTUM-CLASSICAL MIXED-MODE ANALYSIS OF NONLINEARLY COUPLED OSCILLATORS - A TIME-DEPENDENT SELF-CONSISTENT-FIELD APPROACH
YURTSEVER, E; BRICKMANN, J (1992-02-01)
A two-dimensional vibrational system with a strong nonlinear coupling is studied using a quantum-classical mixed mode self-consistent-field approach. The classical equations of motion as well as the time-dependent Schrodinger equation are solved for respective modes under the influence of the average fields generated by the other modes. This vibrational system was previously shown to be chaotic under classical mechanical treatment but quantum mechanical observations pointed out to highly regular behaviour...
Citation Formats
H. Yıldız, “Spectral domain and asymptotic formulations of cylindrical structures,” Middle East Technical University, 1996.