Formulation of a Bilinear Traction-Separation Interface Law in Boundary Elements with Homogenization

2024-01-01
Similar to most conventional composite materials, the interface is generally the weakest part of nanocomposites. For this reason, the behavior of the reinforcement-matrix interface is critical for determining the strength of nanocomposites. Especially in nanocomposites, if no special precautions are taken, the matrix consisting of nano-reinforcements and polymer chains are bound to each other by weak van der Waals interactions and electrostatic interactions. As a result, in most nanocomposites under loading, damage first begins as a separation at the interface. This study focuses on a key aspect of modeling polymer nanocomposites: the interface between the inclusion and the matrix. First, the alternative boundary conditions of homogenization are presented and then implemented into the boundary element method. Afterward, a bilinear interface law between inclusion and matrix is defined in the boundary element-based homogenization method. The homogenized stress response of a heterogeneous Representative Volume Element (RVE) undergoing debonding is compared with numerical studies from the literature. RVEs, including both single and multi-inclusions, are studied. Comparisons are made with the studies related to the modeling interfaces using micromechanics and Mori-Tanaka-based approaches, and boundary element method-based approaches. A good agreement is observed between results.
3rd International Workshop on Plasticity, Damage and Fracture of Engineering Materials, IWPDF 2023
Citation Formats
A. A. Akay, S. Göktepe, and E. Gürses, “Formulation of a Bilinear Traction-Separation Interface Law in Boundary Elements with Homogenization,” İstanbul, Türkiye, 2024, vol. 61, Accessed: 00, 2024. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85200976891&origin=inward.