Frictional Sliding Modes using the Maxwell-Slip Model

2024-01-01
This study investigates the frictional sliding dynamics occurring at the interface between two bodies in contact by using the Maxwell-slip model at the microscopic scale. The elastic body is modeled as a set of independent mass-spring units that are pulled with a rigid driver moving at a constant speed on top. Coulomb friction law is assumed at the mass-spring level. Initial compressive loading is represented by the degree of Poisson's expansion and its effect on the frictional sliding behavior is examined by using a dynamic solution to the Maxwell-slip model. Both stick-slip behavior and steady state behavior is observed for decreasing compressive loading. Our results show that stick-slip behavior at the macroscopic scale is observed caused by crack-like slip propagation at the microscopic scale at higher compressive loads. Macroscopically diminishing stick-slip behavior is observed for higher initial compressive loading conditions as pulse-like slip propagation through the interface is observed. At the highest initial compressive loading condition, propagation of train of pulses through the interface at the microscopic scale is observed causing a steady sliding behavior at the macroscale.
3rd International Workshop on Plasticity, Damage and Fracture of Engineering Materials, IWPDF 2023
Citation Formats
T. I. Özcan, A. Amireghbali, and D. Çöker, “Frictional Sliding Modes using the Maxwell-Slip Model,” İstanbul, Türkiye, 2024, vol. 61, Accessed: 00, 2024. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85200975165&origin=inward.