Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A different base approach for better efficiency on range proofs
Date
2024-09-01
Author
Günsay, Esra
Betin Onur, Cansu
Cenk, Murat
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
34
views
0
downloads
Cite This
Zero-knowledge range proofs (ZKRPs) are commonly used to prove the validation of a secret integer lies in an interval to some other party in a secret way. In many ZKRPs, the secret is represented in binary and then committed via a suitable commitment scheme or represented as an appropriate encryption scheme. This paper is an extended version of the conference paper presented at the 14th IEEE International Conference on Security of Information and Networks. To this end, after summarizing the conference paper, we first analyze the proof proposed by Mao in 1998 in the elliptic-curve setting. Mao's proof contains a bit commitment scheme with an OR construction as a sub-protocol. We have extended Mao's range proof to base-u with a modified OR-proof. We investigate and compare the efficiency of different base approaches on Mao's range proof with both Pedersen commitment and ElGamal encryption. Later, we analyze the range proof proposed by Bootle et al. in both finite fields and elliptic-curve settings. This proof contains polynomial commitment with matrix row operations. We take the number of computations in modulo exponentiation and the cost of the number of exchanged integers between parties. Then, we generalize these costs for u-based construction. We show that compared with the base-2 representation, different base approach provides efficiency in communication cost or computation cost, or both.
Subject Keywords
OR proof
,
Pedersen commitment
,
Zero knowledge range proof
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85201684036&origin=inward
https://hdl.handle.net/11511/111199
Journal
Journal of Information Security and Applications
DOI
https://doi.org/10.1016/j.jisa.2024.103860
Collections
Graduate School of Applied Mathematics, Article
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Günsay, C. Betin Onur, and M. Cenk, “A different base approach for better efficiency on range proofs,”
Journal of Information Security and Applications
, vol. 85, pp. 0–0, 2024, Accessed: 00, 2024. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85201684036&origin=inward.