Three-dimensional flows in the wake of a non-cavitating and cavitating marine propeller

2024-09-01
Başkan Perçin, Özge
Fiscaletti, Daniele
Elsinga, Gerrit E.
Van Terwisga, Tom
Tip-vortex cavitation is among the first forms of cavitation to appear around ship propellers. In the present study, the time-resolved three-dimensional flow field around non-cavitating and cavitating tip vortices in the wake of a marine propeller is investigated with tomographic PIV. The advance ratio of the propeller and the Reynolds number of the flow are kept constant, while the cavitation number is varied by changing the pressure inside the cavitation tunnel. The importance of masking the tip-vortex cavities before performing the tomographic reconstruction is firstly demonstrated, followed by a description of the applied masking algorithm. From the three-dimensional velocity vector fields, coherent structures of vorticity are identified using the Q-criterion. Three types of coherent structures are observed to populate the wake of the propeller, i.e. tip vortex, hub vortex, and secondary vortical structures. The secondary vortical structures surrounding the tip vortex appear to be progressively smaller in size and more chaotically-organized for decreasing cavitation number. This can be attributed to the pressure fluctuations induced by the cavity, which strengthen when the cavity size grows.
EXPERIMENTS IN FLUIDS
Citation Formats
Ö. Başkan Perçin, D. Fiscaletti, G. E. Elsinga, and T. Van Terwisga, “Three-dimensional flows in the wake of a non-cavitating and cavitating marine propeller,” EXPERIMENTS IN FLUIDS, vol. 65, pp. 1–13, 2024, Accessed: 00, 2024. [Online]. Available: https://link.springer.com/article/10.1007/s00348-024-03888-9.