Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Class distance weighted cross entropy loss for classification of disease severity
Date
2025-04-01
Author
Polat, Gorkem
Çağlar, Ümit Mert
Temizel, Alptekin
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
380
views
0
downloads
Cite This
Assessing disease severity with ordinal classes, where each class reflects increasing severity levels, benefits from loss functions designed for this ordinal structure. Traditional categorical loss functions, like Cross-Entropy (CE), often perform suboptimally in these scenarios. To address this, we propose a novel loss function, Class Distance Weighted Cross-Entropy (CDW-CE), which penalizes misclassifications more severely when the predicted and actual classes are farther apart. We evaluated CDW-CE using various deep architectures, comparing its performance against several categorical and ordinal loss functions. To assess the quality of latent representations, we used t-distributed stochastic neighbor embedding (t-SNE) and uniform manifold approximation and projection (UMAP) visualizations, quantified the clustering quality using the Silhouette Score, and compared Class Activation Maps (CAM) generated by models trained with CDW-CE and CE loss. Feedback from domain experts was incorporated to evaluate how well model attention aligns with expert opinion. Our results show that CDW-CE consistently improves performance in ordinal image classification tasks. It achieves higher Silhouette Scores, indicating better class discrimination capability, and its CAM visualizations show a stronger focus on clinically significant regions, as validated by domain experts. Receiver operator characteristics (ROC) curves and the area under the curve (AUC) scores highlight that CDW-CE outperforms other loss functions, including prominent ordinal loss functions from the literature.
URI
https://hdl.handle.net/11511/113101
Journal
EXPERT SYSTEMS WITH APPLICATIONS
DOI
https://doi.org/10.1016/j.eswa.2024.126372
Collections
Graduate School of Informatics, Article
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Polat, Ü. M. Çağlar, and A. Temizel, “Class distance weighted cross entropy loss for classification of disease severity,”
EXPERT SYSTEMS WITH APPLICATIONS
, vol. 269, pp. 1–15, 2025, Accessed: 00, 2025. [Online]. Available: https://hdl.handle.net/11511/113101.