Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Cartan ideal, prolongation and backlund transformations for Einsteins equations.
Date
1985
Author
Bilge, Ayşe Hümeyra
Metadata
Show full item record
Item Usage Stats
84
views
0
downloads
Cite This
Subject Keywords
Einstein field equations.
,
Backlund transformations.
URI
https://hdl.handle.net/11511/11337
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Jordan KdV systems and Painleve property
Karasu, Emine Ayşe (1997-03-01)
The Painleve property of Jordan KdV systems in two dimensions is studied. It is shown that a subclass of these equations on a nonassociative algebra possesses the Painleve property.
Cartan matrices and integrable lattice Toda field equations
Habibullin, Ismagil; Zheltukhın, Kostyantyn; Yangubaeva, Marina (IOP Publishing, 2011-11-18)
Differential-difference integrable exponential-type systems are studied corresponding to the Cartan matrices of semi-simple or affine Lie algebras. For the systems corresponding to the algebras A(2), B(2), C(2), G(2), the complete sets of integrals in both directions are found. For the simple Lie algebras of the classical series A(N), B(N), C(N) and affine algebras of series D(N)((2)), the corresponding systems are supplied with the Lax representation.
Modeling Electromagnetic Scattering from Random Array of Objects by Form Invariance of Maxwell's Equations
ÖZGÜN, ÖZLEM; Kuzuoğlu, Mustafa (2015-07-24)
Electromagnetic scattering from a random array of objects is modeled by using special coordinate transformations that are based on the form invariance property of Maxwell's equations. The main motivation is to perform multiple realizations of Monte Carlo simulations corresponding to different positions of objects in an efficient way by using a single mesh. This is achieved by locating transformation media within the computational domain. The proposed approach is applied to finite element method and tested b...
Conformal black hole solutions of axidilaton gravity in D dimensions
Cebeci, H; Dereli, T (2002-02-15)
Static, spherically symmetric solutions of axidilaton gravity in D dimensions are given in the Brans-Dicke frame for arbitrary values of the Brans-Dicke constant omega and an axion-dilaton coupling parameter k. The mass and the dilaton and axion charges are determined and a BPS bound is derived. There exists a one-parameter family of black hole solutions in the scale-invariant limit.
Stochastic Hybrid Systems of Financial and Economical Processess: Identificatied, Optimized and Controlled
Weber, Gerhard Wilhelm; Yolcu Okur, Yeliz; Yerlikaya Özkurt, Fatma; Kuter, Semih; Özmen, Ayşe; Karimov, Azar(2013-12-31)
This research project will scientifically broaden, deepen and apply a scientific unified approach of both identification and optimal control of Stochastic Differential Equations with Jumps (SHSJs), motivated by and foreseen for purposes of financial mathematics and actuarial sciences. SHSJs and further structured and detailed models are in the scope of our framework, and special interests pursued consisted in a. refinement of Parameter Estimation for SDEs and b. Portfolio Optimization and, as a future exten...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. H. Bilge, “Cartan ideal, prolongation and backlund transformations for Einsteins equations.,” Ph.D. - Doctoral Program, Middle East Technical University, 1985.