Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Conformal black hole solutions of axidilaton gravity in D dimensions
Download
index.pdf
Date
2002-02-15
Author
Cebeci, H
Dereli, T
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
229
views
0
downloads
Cite This
Static, spherically symmetric solutions of axidilaton gravity in D dimensions are given in the Brans-Dicke frame for arbitrary values of the Brans-Dicke constant omega and an axion-dilaton coupling parameter k. The mass and the dilaton and axion charges are determined and a BPS bound is derived. There exists a one-parameter family of black hole solutions in the scale-invariant limit.
Subject Keywords
Field
URI
https://hdl.handle.net/11511/64791
Journal
PHYSICAL REVIEW D
DOI
https://doi.org/10.1103/physrevd.65.047501
Collections
Department of Physics, Article
Suggestions
OpenMETU
Core
Conformal symmetry in field theory
Huyal, Ulaş; Tekin, Bayram; Department of Physics (2011)
In this thesis, conformal transformations in d and two dimensions and the results of conformal symmetry in classical and quantum field theories are reviewed. After investigating the conformal group and its algebra, various aspects of conformal invariance in field theories, like conserved charges, correlation functions and the Ward identities are discussed. The central charge and the Virasoro algebra are briefly touched upon.
Radial motion of highly conducting sphere in magnetic field
Gurcan, OD; Mirnov, VV; Ucer, D (2000-05-01)
Radial motion of a highly conducting sphere in external magnetic field is considered. It both perturbs the external magnetic field and generates an electric field. Exact analytic solution has been obtained previously for a uniformly expanding sphere. In the present paper a new exact solution is derived which is valid not only for expansion but for contraction as well. It allows us to calculate analytically the total electromagnetic energy irradiated by the sphere involved in periodical radial motion with ar...
Phase transition in compact QED3 and the Josephson junction
Onemli, VK; Tas, M; Tekin, Bayram (2001-08-01)
We study the finite temperature phase transition in 2+1 dimensional compact QED and its dual theory: Josephson junction. Duality of these theories at zero temperature was established long time ago in [1]. Phase transition in compact QED is well studied thus we employ the 'duality' to study the superconductivity phase transition in a Josephson junction. For a thick junction we obtain a critical temperature in terms of the geometrical properties of the junction.
Pure gauge spin-orbit couplings
Shikakhwa, M. S. (2017-01-17)
Planar systems with a general linear spin-orbit interaction (SOI) that can be cast in the form of a non-Abelian pure gauge field are investigated using the language of non-Abelian gauge field theory. A special class of these fields that, though a 2 x 2 matrix, are Abelian are seen to emerge and their general form is given. It is shown that the unitary transformation that gauges away these fields induces at the same time a rotation on the wave function about a fixed axis but with a space-dependent angle, bot...
Linear-linear basis functions for MLFMA solutions of magnetic-field and combined-field integral equations
Ergül, Özgür Salih (2007-04-01)
We present the linear-linear (LL) basis functions to improve the accuracy of the magnetic-field integral equation (MFIE) and the combined-field integral equation (CFIE) for three-dimensional electromagnetic scattering problems involving closed conductors. We consider the solutions of relatively large scattering problems by employing the multilevel fast multipole algorithm. Accuracy problems of MFIE and CFIE arising from their implementations with the conventional Rao-Wilton-Glisson (RWG) basis functions can...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Cebeci and T. Dereli, “Conformal black hole solutions of axidilaton gravity in D dimensions,”
PHYSICAL REVIEW D
, pp. 0–0, 2002, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/64791.