Jordan KdV systems and Painleve property

The Painleve property of Jordan KdV systems in two dimensions is studied. It is shown that a subclass of these equations on a nonassociative algebra possesses the Painleve property.


Modeling Electromagnetic Scattering from Random Array of Objects by Form Invariance of Maxwell's Equations
ÖZGÜN, ÖZLEM; Kuzuoğlu, Mustafa (2015-07-24)
Electromagnetic scattering from a random array of objects is modeled by using special coordinate transformations that are based on the form invariance property of Maxwell's equations. The main motivation is to perform multiple realizations of Monte Carlo simulations corresponding to different positions of objects in an efficient way by using a single mesh. This is achieved by locating transformation media within the computational domain. The proposed approach is applied to finite element method and tested b...
Lax tensors and separable coordinates in (2+1) dimensions
Baleanu, D; Baskal, S (Springer Science and Business Media LLC, 2000-11-01)
We study the Lax tensors of the separable coordinates in (2+1) dimensions. The Lax tensors of the dual manifolds are investigated.
Combining perturbation theory and transformation electromagnetics for finite element solution of Helmholtz-type scattering problems
Kuzuoğlu, Mustafa (2014-10-01)
A numerical method is proposed for efficient solution of scattering from objects with weakly perturbed surfaces by combining the perturbation theory, transformation electro-magnetics and the finite element method. A transformation medium layer is designed over the smooth surface, and the material parameters of the medium are determined by means of a coordinate transformation that maps the smooth surface to the perturbed surface. The perturbed fields within the domain are computed by employing the material p...
Modeling of reversible γ/α transformations of low carbon steels in the intercritical temperature range
Reti, Tamas; Felde, Imre; Gür, Cemil Hakan (2004-10-01)
A phenomenological kinetic model has been developed for the prediction of non-isothermal reversible incomplete transformations in low-carbon hypoeutectoid steels. The theoretical basis of the proposed method has its origin in a possible extension of the traditional Austin-Rickett kinetic differential equation. To critically assess the applicability of the model, a number of experiments based on computer simulations have been performed to predict the austenite/ferrite proeutectoid transformation in the tempe...
Software metamaterials: Transformation media based multi-scale techniques for computational electromagnetics
Ozgun, Ozlem; Kuzuoğlu, Mustafa (2013-03-01)
This paper presents computational models employing special transformation-based media-which we call software metamaterials-for the purpose of enhancing the ability of numerical modeling methods for solving multi-scale electromagnetic boundary value problems involving features with multiple length or frequency scales or both. The multi-scale problems, in general, suffer from difficulties in mesh generation and the number of unknowns due to certain meshing requirements dictated by the fine features of the pro...
Citation Formats
E. A. Karasu, “Jordan KdV systems and Painleve property,” INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, pp. 705–713, 1997, Accessed: 00, 2020. [Online]. Available: