Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Data-driven alarm parameter optimization
Date
2025-05-01
Author
Eylen, Tayfun
Eren, Pekin Erhan
Koçyiğit, Altan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
18
views
0
downloads
Cite This
Most manufacturing sector businesses utilize advanced control mechanisms to sustain their ongoing operations. An alarm management system is one of these control mechanisms that works as a safety barrier, and it contains alarm messages indicating abnormal situations to operators. The causes of alarms mainly result in a harmful state of operations that should be eliminated as quickly as possible to minimize possible negative results. However, the size of the system, lack of people directing the system, and process-dependent peak conditions may lead operators to miss some critical alarms. Quality and quantity of products, job safety, and operational costs are some of the features negatively affected by these missing alarms. The proposed work aims to combine a well-established alarm management philosophy with advanced data analytics techniques to optimize decision variables in alarm management processes. This study introduces a novel data-driven optimization method that leverages the Tennessee Eastman Process as a benchmark to validate its effectiveness. The proposed method aims to ensure continuous alarm system health by contributing to the automation of the parameter optimization process in the life cycles of alarm management systems. Key contributions include the development of a method to associate disturbances with alarms, the creation of an alarm simulation platform, and the improvement of alarm parameters through a unique optimization approach. The results show that there is a trade-off between alarm reaction delay, which refers to the time between disturbances and the first relevant alarm and number of alarms and alarm on times. This trade-off can be evaluated in the desired direction by taking into account the priorities of the process.
Subject Keywords
Alarm KPI's
,
Alarm management
,
Alarm parameter optimization
,
Process safety
,
Tennessee Eastman Process
URI
https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85217927974&origin=inward
https://hdl.handle.net/11511/113662
Journal
Computers and Chemical Engineering
DOI
https://doi.org/10.1016/j.compchemeng.2025.109041
Collections
Graduate School of Informatics, Article
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Eylen, P. E. Eren, and A. Koçyiğit, “Data-driven alarm parameter optimization,”
Computers and Chemical Engineering
, vol. 196, pp. 0–0, 2025, Accessed: 00, 2025. [Online]. Available: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85217927974&origin=inward.