Development of a novel enzyme immobilization technique and its application to continuous flow membrane reactor.

Arıca, Mehmet Yakup


Development and characterization of composite proton exchange membranes for fuel cell applications
Akay, Ramiz Gültekin; Baç, Nurcan; Department of Chemical Engineering (2008)
Intensive research on development of alternative low cost, high temperature membranes for proton exchange membrane (PEM) fuel cells is going on because of the well-known limitations of industry standard perfluoro-sulfonic acid (PFSA) membranes. To overcome these limitations such as the decrease in performance at high temperatures (>80 0C) and high cost, non-fluorinated aromatic hydrocarbon based polymers are attractive. The objective of this study is to develop alternative membranes that possess comparable ...
Development of self-humidifying nano-composite membrane for polymer electrolyte membrane fuel cell
Çaçan, Umut Baki; Özkan, Necati; Devrim, Yılser; Department of Polymer Science and Technology (2015)
Low humidity self-humidifying nano-composite membrane electrode assemblies (MEA) were developed for Polymer Electrolyte Membrane Fuel Cell (PEMFC) working at elevated temperatures. The nano-composite membranes were prepared by adding nano-sized silica particles (SiO2) or inorganic fillers with a size of approximately 20 nm to a polymeric material which is commercially named as Nafion (Perfluoro Sulfonic Acid/PFSA). The particle content of the nano-composite membranes were between 2.5 – 10 wt. %. In this man...
Advancing tissue engineering by using electrospun nanofibers
Ashammakhi, Nureddin; Ndreu, A.; Nikkola, L.; Wimpenny, I.; Yang, Y. (Future Medicine Ltd, 2008-07-01)
Electrospinning is a versatile technique that enables the development of nanofiber-based scaffolds, from a variety of polymers that may have drug-release properties. Using nanofibers, it is now possible to produce biomimetic scaffolds that can mimic the extracellular matrix for tissue engineering. Interestingly, nanofibers can guide cell growth along their direction. Combining factors like fiber diameter, alignment and chemicals offers new ways to control tissue engineering. In vivo evaluation of nanomats i...
Development of pan based composite membranes for pervaporation
Okumuş, Emin; Gürkan, Türker; Yılmaz, Levent; Department of Chemical Engineering (1998)
Partial purification and characterization of arylamine N-acetyltransferases from human breast tumor tissues
Su, Yaşasın Senem; Güray, Tülin; Department of Biochemistry (2006)
Arylamine N-acetyltransferases (NATs) were partially purified from human breast tumor tissues with complete separation of the isoforms in DEAE-Cellulose ion-exchange step. NAT with activity towards p-aminobenzoic acid (PABA) was isolated and purified from human breast tumor with 77 % yield and a purification factor of 5-fold. NAT with activity towards sulfamethazine (SMZ) was isolated and purified from human breast tumor with 21 % yield and a purification factor of 3-fold. Further purification attempts by B...
Citation Formats
M. Y. Arıca, “Development of a novel enzyme immobilization technique and its application to continuous flow membrane reactor.,” Ph.D. - Doctoral Program, Middle East Technical University, 1992.