Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Modelling, trajectory planning and control of computer controlled manipulators
Download
003999.pdf
Date
1988
Author
Balkan, Tuna
Metadata
Show full item record
Item Usage Stats
150
views
0
downloads
Cite This
Subject Keywords
Manipulators (Mechanism).
,
Robots, Industrial.
,
Automation.
URI
https://hdl.handle.net/11511/11931
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Trajectory planning algorithms for cooperating robots
Selvi, Emre; Soylu, Reşit; Department of Mechanical Engineering (2003)
Control of a planar cable-actuated parallel manipulator with realistic cables
Düzgören, Onur; Özgören, Mustafa Kemal; Department of Mechanical Engineering (2018)
The cable-actuated parallel manipulators comprise a new class of robotic systems which utilize length-controlled unilateral force elements like cables or wires to move and orient an object. They provide several benefits over conventional parallel robots, such as larger workspace, simpler structure, and higher payload/manipulator weight ratio. However, the cables can only be pulled but not pushed. Besides, they may sag due to their own weight. Therefore, the cable-actuated manipulators pose challenges in mod...
Implementation of a closed-loop action generation system on a humanoid robot through learning by demonstration
Tunaoğlu, Doruk; Şahin, Erol; Department of Computer Engineering (2010)
In this thesis the action learning and generation problem on a humanoid robot is studied. Our aim is to realize action learning, generation and recognition in one system and our inspiration source is the mirror neuron hypothesis which suggests that action learning, generation and recognition share the same neural circuitry. Dynamic Movement Primitives, an efficient action learning and generation approach, are modified in order to fulfill this aim. The system we developed (1) can learn from multiple demonstr...
Optimal redundancy resolution for kinematically redundant parallel manipulators
Tunç, Tansel Sıtkı; Özgören, Mustafa Kemal; Department of Mechanical Engineering (2014)
In this study, the redundancy resolution of kinematically redundant parallel manipulators has been investigated as an optimization problem. The emerging optimization problem has been solved globally using a hybrid genetic algorithm. This algorithm has been applied as an example to a planar parallel manipulator which has four degrees of freedom. It has been assumed that the manipulator is used so that only the tip point of its end-effector is controlled. Therefore, the rotation angle of the end effector has ...
Optimal control of a half circular compliant legged monopod
Özkan Aydın, Yasemin; Leblebicioğlu, Mehmet Kemal; Saranlı, Afşar; Department of Electrical and Electronics Engineering (2013)
Legged robots have complex architecture because of their nonlinear dynamics and unpredictable ground contact characteristics. They can be also dynamically stable and exhibit dynamically dexterous behaviors like running, jumping, flipping which require complex plant models that may sometimes be difficult to build. In this thesis, we focused on half circular compliant legged monopod that can be considered as a reduced-order dynamical model for the hexapod robot, called RHex. The main objective of this thesis ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
T. Balkan, “Modelling, trajectory planning and control of computer controlled manipulators,” Ph.D. - Doctoral Program, Middle East Technical University, 1988.