Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Aerodynamic optimization of turbine cascades using an euler/boundary-layer solver coupled genetic algorithm.
Download
119152.pdf
Date
2002
Author
Öksüz, Özhan
Metadata
Show full item record
Item Usage Stats
106
views
0
downloads
Cite This
URI
https://hdl.handle.net/11511/12855
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Aerodynamic optimization of turbomachinery cascades using Euler/boundary-layer coupled genetic algorithms
Oksuz, O; Akmandor, IS; Kavsaoglu, MS (American Institute of Aeronautics and Astronautics (AIAA), 2002-05-01)
A new methodology is developed to find the optimal aerodynamic performance of a turbine cascade. A boundary-layer coupled Euler algorithm and a genetic algorithm are linked within an automated optimization loop. The multiparameter objective function is based on the blade loading. For a given inlet Mach number and baseline cascade geometry, the flow inlet and exit angles, the blade thickness and the solidity are optimized by a robust genetic algorithm. First, the Sanz subcritical turbine cascade is selected ...
Aerodynamic optimization of horizontal axis wind turbine blades by using CST method, BEM theory and genetic algorithm
Oğuz, Keriman; Sezer Uzol, Nilay; Department of Aerospace Engineering (2019)
In this thesis, an aerodynamic design and optimization study for rotor airfoils and blades of Horizontal Axis Wind Turbines (HAWTs) is performed by using different airfoil representations and genetic algorithm. Two airfoil representations, the Class-Shape Transformation (CST) method and the Parametric Section (PARSEC) method, are used for the airfoil geometry designs. Their aerodynamic data is obtained by a potential flow solver software, XFOIL. The Blade Element Momentum (BEM) theory is used to calculate t...
Aerodynamic modelling and optimization of morphing wings
Körpe, Durmuş Sinan; Özgen, Serkan; Department of Aerospace Engineering (2014)
This thesis deals with aerodynamic optimization of morphing wings under performance and geometric constraints. In order to perform the optimization process, flow solvers computing aerodynamic lift and drag were developed as a function evaluator. A gradient based optimization method was used in order to develop the optimization algorithm. Three dimensional panel method solver was developed in order to obtain lift, pressure drag and induced drag values for a finite wing. Obtained results were compared with di...
AERODYNAMIC OPTIMIZATION OF HORIZONTAL AXIS WIND TURBINE ROTOR BY USING BEM, CST METHOD AND GENETIC ALGORITHM
Oğuz, Keriman; Sezer Uzol, Nilay (2019-09-18)
Aerodynamic Optimization Of Horizontal Axis Wind Turbines Based On Potential Flow Solutions With BEM Theory And Genetic Algorithm
Tonkal, Ozan Çağrı; Pehlivan, Sercan; Sezer Uzol, Nilay; İşler, Veysi (null; 2011-05-25)
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Ö. Öksüz, “Aerodynamic optimization of turbine cascades using an euler/boundary-layer solver coupled genetic algorithm.,” Middle East Technical University, 2002.