On the Hamiltonian circle actions and symplectic reduction

Demir, Ali Sait
Given a symplectic manifold, it is of interest how Lie group actions, their orbit spaces look like and what are some topological requirements on the existence of such actions. In this thesis we present the work of Ono, giving some sufficient conditions for non-existence of circle actions on symplectic manifolds and work of Li, describing the fundamental groups of symplectic reductions of circle actions.


On the consistency of the solutions of the space fractional Schroumldinger equation (vol 53, 042105, 2012)
Bayin, Selcuk S. (2012-08-01)
Recently we have reanalyzed the consistency of the solutions of the space fractional Schroumldinger equation found in a piecewise manner, and showed that an exact and a proper treatment of the relevant integrals prove that they are consistent. In this comment, for clarity, we present additional information about the critical integrals and describe how their analytic continuation is accomplished.
On construction of recursion operators from Lax representation
Gurses, M; Karasu, Atalay; Sokolov, VV (1999-12-01)
In this work we develop a general procedure for constructing the recursion operators for nonlinear integrable equations admitting Lax representation. Several new examples are given. In particular, we find the recursion operators for some KdV-type systems of integrable equations. (C) 1999 American Institute of Physics. [S0022-2488(99)03212-0].
Group actions, non-Kähler complex manifolds and SKT structures
Poddar , Mainak; Singh Thakur , Ajay (Walter de Gruyter GmbH, 2018-2-2)
We give a construction of integrable complex structures on the total space of a smooth principal bundle over a complex manifold, with an even dimensional compact Lie group as structure group, under certain conditions. This generalizes the constructions of complex structure on compact Lie groups by Samelson and Wang, and on principal torus bundles by Calabi-Eckmann and others. It also yields large classes of new examples of non-Kähler compact complex manifolds. Moreover, under suitable restrictions on the ba...
Yang-Mills solutions on Euclidean Schwarzschild space
Tekin, Bayram (2002-04-15)
We show that the apparently periodic Charap-Duff Yang-Mills "instantons" in time-compactified Euclidean Schwarzschild space are actually time independent. For these solutions, the Yang-Mills potential is constant along the time direction (no barrier) and therefore, there is no tunneling. We also demonstrate that the solutions found to date are three-dimensional monopoles and dyons. We conjecture that there are no time-dependent solutions in the Euclidean Schwarzschild background.
On endomorphisms of surface mapping class groups
Korkmaz, Mustafa (Elsevier BV, 2001-05-01)
In this paper, we prove that every endomorphism of the mapping class group of an orientable surface onto a subgroup of finite index is in fact an automorphism.
Citation Formats
A. S. Demir, “On the Hamiltonian circle actions and symplectic reduction,” M.S. - Master of Science, Middle East Technical University, 2003.