Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A QCD analysis of high energy neutrino-nucleon interactions
Download
index.pdf
Date
2003
Author
Gamsızkan, Halil
Metadata
Show full item record
Item Usage Stats
154
views
70
downloads
Cite This
In this thesis, a leading-order QCD analysis of structure functions in neutrinonucleon interactions is performed. From the CCFR nucleon structure function data, the QCD parameter Lambda has been extracted. This measurement also corresponds to a measurement of the strong coupling constant. Two fits to the data have been performed, the nonsinglet-only fit and the singlet-nonsinglet combined fit. The result for Lambda was found to be 289 +62 Ł59 ʹ76 MeV, where the errors are statistical and systematical, respectively. This result is compared to the world-wide measurements of this quantity. In order to verify the agreement, also the logarithmic slopes of the QCD model and the structure function data are calculated and compared.
Subject Keywords
Quantum chromodynamics
,
Neutrino interactions
,
Nuclear reactions
URI
http://etd.lib.metu.edu.tr/upload/1006428/index.pdf
https://hdl.handle.net/11511/13559
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
A frequency domain boundary element formulation for dynamic interaction problems in poroviscoelastic media
Argeso, Hakan; Mengi, Yalcin (2014-02-01)
A unified formulation is presented, based on the boundary element method, to perform the interaction analysis for the problems involving poroviscoelastic media. The proposed formulation permits the evaluation of all the elements of impedance and input motion matrices at a single step in terms of system matrices of boundary element method without solving any special problem, such as, unit displacement or load problem, as required by conventional methods. It further eliminates the complicated procedure and th...
A quasi-incompressible and quasi-inextensible finite element analysis of fibrous soft biological tissues
Gultekin, Osman; Rodoplu, Burak; Dal, Hüsnü (Springer Science and Business Media LLC, 2020-06-01)
The contribution presents anextensionandapplicationof a recently proposed finite element formulation for quasi-inextensible and quasi-incompressible finite hyperelasticity to fibrous soft biological tissues and touches in particular upon computational aspects thereof. In line with theoretical framework presented by Dal (Int J Numer Methods Eng 117:118-140, 2019), the mixed variational formulation is extended to two families of fibers as often encountered while dealing with fibrous tissues. Apart from that, ...
A new time-domain boundary element formulation for generalized models of viscoelasticity
Akay, Ahmet Arda; Gürses, Ercan; Göktepe, Serdar (2023-05-01)
The contribution is concerned with the novel algorithmic formulation for generalized models of viscoelasticity under quasi-static conditions within the framework of the boundary element method (BEM). The proposed update algorithm is constructed for a generic rheological model of linear viscoelasticity that can either be straightforwardly simplified to recover the basic Kelvin and Maxwell models or readily furthered towards the generalized models of viscoelasticity through the serial or parallel extensions. ...
A Formal Methods Approach to Pattern Recognition and Synthesis in Reaction Diffusion Networks
Bartocci, Ezio; Aydın Göl, Ebru; Haghighi, Iman; Belta, Calin (2018-03-01)
We introduce a formal framework for specifying, detecting, and generating spatial patterns in reaction diffusion networks. Our approach is based on a novel spatial superposition logic, whose semantics is defined over the quad-tree representation of a partitioned image. We demonstrate how to use rule-based classifiers to efficiently learn spatial superposition logic formulas for several types of patterns from positive and negative examples. We implement pattern detection as a model-checking algorithm and we ...
A unified approach for the formulation of interaction problems by the boundary element method
Mengi, Y; Argeso, H (Wiley, 2006-04-30)
A unified formulation is presented, based on boundary element method, in a form suitable for performing the interaction analyses by substructure method for solid-solid and soil-structure problems. The proposed formulation permits the evaluation of all the elements of impedance and input motion matrices simultaneously at a single step in terms of system matrices of the boundary element method without solving any special problem, such as, unit displacement or load problem, as required in conventional methods....
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Gamsızkan, “A QCD analysis of high energy neutrino-nucleon interactions,” M.S. - Master of Science, Middle East Technical University, 2003.