Numerical investigation of stirred tank hydrodynamics

Yapıcı, Kerim
A theoretical study on the hydrodynamics of mixing processes in stirred tanks is described. The primary objective of this study is to investigate flow field and power consumption generated by the six blades Rushton turbine impeller in baffled, flat-bottom cylindrical tank both at laminar and turbulent flow regime both qualitatively and quantitatively. Experimental techniques are expensive and time consuming in characterizing mixing processes. For these reasons, computational fluid dynamics (CFD) has been considered as an alternative method. In this study, the velocity field and power requirement are obtained using FASTEST, which is a CFD package. It employs a fully conservative second order finite volume method for the solution of Navier-Stokes equations. The inherently time-dependent geometry of stirred vessel is simulated by a multiple frame of reference approach. The flow field obtained numerically agrees well with those published experimental measurements. It is shown that Rushton turbine impeller creates predominantly radial jet flow pattern and produces two main recirculation flows one above and the other below the impeller plane. Throughout the tank impeller plane dimensionless radial velocity is not affected significantly by the increasing impeller speed and almost decreases linearly with increase in radial distance. Effect of the baffling on the radial and tangential velocities is also investigated. It is seen that tangential velocity is larger than radial velocity at the same radial position in unbaffled system. An overall impeller performance characteristic like power number is also found to be in agreement with the published experimental data. Also power number is mainly affected by the baffle length and increase with increase in baffle length. It is concluded that multiple frame of reference approach is suitable for the prediction of flow pattern and
Citation Formats
K. Yapıcı, “Numerical investigation of stirred tank hydrodynamics,” M.S. - Master of Science, Middle East Technical University, 2003.