Stabilization of expansive soils by Çayırhan fly ash and desulphogypsum

Download
2004
Çetiner, Sertan Işık
Expansive soils are one of the most serious problems which the foundation engineer faces. Several attempts are being made to control the swell-shrink behavior of these soils. One of the most effective and economical methods is to use chemical additives. Fly ash and desulphogypsum, both of which are by-products of coal burning thermal power plants, are accumulating in large quantities all over the world and pose serious environmental problems. In this study, the expansive soil was stabilized using the fly ash and desulphogypsum obtained from Çayirhan Thermal Power Plant. Fly ash and desulphogypsum were added to the expansive soil from 0 to 30 percent. Lime was used to see how efficient fly ash and desulphogypsum on expansive soil stabilization were, and was added to the expansive soil from 0 to 8 percent. The properties obtained were chemical composition, grain size distribution, consistency limits, swelling percentage, and rate of swell. Fly ash, desulphogypsum, and lime added samples were cured for 7 days and 28 days, after which they were subjected to free swell tests. Swelling percentage decreased and rate of swell increased with increasing stabilizer percentage. Curing resulted in further reduction in swelling percentage and further increase in rate of swell. 25 percent and 30 percent fly ash and desulphogypsum additions reduced the swelling percentage to levels comparable to lime stabilization.

Suggestions

Stabilization of expansive soils using Bigadiç zeolite (boron by-product)
Demirbaş, Güneş; Çokça, Erdal; Department of Civil Engineering (2009)
Expansive soils are a worldwide problem that poses several challenges for civil engineers. Such soils swell when given an access to water and shrink when they dry out. The most common and economical method for stabilizing these soils is using admixtures that prevent volume changes. In this study the effect of using Bigadic zeolite (boron by-product) in reducing the swelling potential is examined. The expansive soil is prepared in the laboratory by mixturing kaolinite and bentonite. Bigadic zeolite (boron by...
Stabilization of expansive soils using waste marble dust
Başer, Onur; Çokça, Erdal; Department of Civil Engineering (2009)
Expansive soils occurring in arid and semi-arid climate regions of the world cause serious problems on civil engineering structures. Such soils swell when given an access to water and shrink when they dry out. Several attempts are being made to control the swell-shrink behavior of these soils. Soil stabilization using chemical admixtures is the oldest and most widespread method of ground improvement. In this study, waste limestone dust and waste dolomitic marble dust, by-products of marble industry, were us...
Stabilization of Expansive Soils by Using Aggregate Waste, Rock Powder and Lime
Yeşilbaş, Gülşah; Çokça, Erdal; Department of Civil Engineering (2004)
Expansive soils are a worldwide problem that poses several challenges for civil engineers. Such soils swell when given an access to water and shrink when they dry out. The most common and economical method for stabilizing these soils is using admixtures that prevent volume changes. In this study the effect of using rock powder and aggregate waste with lime in reducing the swelling potential is examined. The expansive soil used in this study is prepared in the laboratory by mixturing kaolinite and bentonite....
Stabilization of an expansive soil using phosphogypsum
Özkan, İlyas; Çokça, Erdal; Department of Civil Engineering (2015)
Expansive soils are a worldwide problem that poses several challenges for civil engineers. Such soils swell when given an access to water and shrink when they dry out. The most common and economical method for stabilizing these soils is using admixtures that prevent volume changes. Studies for treatment of expansive soils with phosphogypsum are very limited in literature. In this study the effect of phosphogypsum (PG) in reducing the swelling potential is examined. The expansive soil was prepared in the lab...
Prediction of swelling behavior of expansive soils using modified free swell index, methylene blue and swell oedometer tests
Jaleh Forouzan, Amir; Çokça, Erdal; Department of Civil Engineering (2016)
Expansive soils are recognized as problematic soils that impose several challenges for civil engineers. Such soils undergo significant volume change in case water penetrates into them, and they shrink as they lose moisture. Lightly-loaded engineering structures such as pavements, single story buildings, railways and walkways may experience severe damages when they are founded on such soils. Determination of expansive soils and quantifying their swelling potential and pressure caused by their expansion are e...
Citation Formats
S. I. Çetiner, “Stabilization of expansive soils by Çayırhan fly ash and desulphogypsum,” M.S. - Master of Science, Middle East Technical University, 2004.