Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Ageing characteristics of copper based shape memory alloys
Download
index.pdf
Date
2004
Author
Tarhan, Elif
Metadata
Show full item record
Item Usage Stats
265
views
168
downloads
Cite This
Martensite-to-Beta transformation temperatures of CuAlNiMn and CuAlNi shape memory alloys has been determined by differential scanning calorimetry (DSC). In CuAlNiMn alloys, each new betatizing treatment has resulted in randomly varying transformation temperatures on the same specimen and an anomalously diffuse and serrated Martensite-to-Beta transformation peaks in the first cycle. Therefore, as quenched alloy samples were thermally cycled for three times in DSC prior to ageing to obtain thermally stable and reproducible transformation temperatures and to eliminate the anomalous effect of betatizing on the transformation temperatures. CuAlNiMn alloys were aged in martensitic condition at temperatures in the range 80?C to 150?C for 24 hours to 312 hours ageing periods. Both A_s and A_f temperatures have increased with ageing temperature and time while M_s and M_f temperatures have not changed during martensite ageing. Transformation temperatures of CuAlNi alloys, on the other hand, have not changed during martensite ageing. In this respect, CuAlNiMn alloys were found to be more prone to martensite stabilization than the CuAlNi alloys. Through Transmission Electron Microscope investigation in the Cu-12.6wt%Al-5.9wt%Ni-1.8wt%Mn alloy aged at 150?C for 312 hours has revealed no sign of precipitate formation and it has been concluded that the ?precipitates pinning martensite boundaries? mechanism could not be responsible of martensite stabilization. Beta phase ageing of CuAlNiMn alloys at temperatures 200?C, 230?C, 250?C and 270?C, have drastically shortened the periods for stabilization to the extent that β-to-M transformation completely ceases. With regard to the Manganese content, highest Manganese bearing alloy was the one stabilized first and the lowest manganese containing one was the longest lasting alloy during beta phase ageing. Beta stabilization was not
Subject Keywords
Copper alloys.
URI
http://etd.lib.metu.edu.tr/upload/3/593541/index.pdf
https://hdl.handle.net/11511/13964
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Investigation of cell migration and proliferation in agarose based hydrogels for tissue engineering applications
Vardar, Elif; Hasırcı, Nesrin; Hasırcı, Vasıf Nejat; Department of Biomedical Engineering (2010)
Hydrogels are three dimensional, insoluble, porous and crosslinked polymer networks. Due to their high water content, they have great resemblance to natural tissues, and therefore, demonstrate high biocompatibility. The porous structure provides an aqueous environment for the cells and also allows influx of nutrients needed for cellular viability. In this study, a natural biodegradable material, agarose (Aga), was used and semi-interpenetrating networks (semi-IPN) were prepared with polymers having differen...
Thermal analysis of electroinitiated and radiation induced poly(epoxycyclopentanes) and poly(epoxycyclohexanes) by mass spectrometry
Hacaloğlu, Jale; Önal, Ahmet Muhtar (1995-01-01)
Thermal behaviour of electroinitiated and radiation induced poly(epoxycyclopentanes), PECP, and poly(epoxycyclohexanes), PECH, have been studied by a direct pyrolysis mass spectrometry technique. The mechanism of thermal degradation of the samples prepared by electroinitiation was found to be a radical depolymerization mechanism yielding mainly monomer. The broader temperature ranges of thermal decomposition in the case of polymer samples prepared by irradiation may be attributed to more complicated degrada...
Molecular dynamics study of random and ordered metals and metal alloys
Kart, Hasan Hüseyin; Tomak, Mehmet; Department of Physics (2004)
The solid, liquid, and solidification properties of Pd, Ag pure metals and especially PdxAg1-x alloys are studied by using the molecular dynamics simulation. The effects of temperature and concentration on the physical properties of PdxÞAg1-x are analyzed. Sutton-Chen (SC) and Quantum Sutton-Chen (Q-SC) many-body potentials are used as interatomic interactions which enable one to investigate the thermodynamic, static, and dynamical properties of transition metals. The simulation results such as cohesive ene...
Heat-damage assessment of carbon-fiber-reinforced polymer composites by diffuse reflectance infrared spectroscopy
Dara, IH; Ankara, A; Akovali, G; Suzer, S (2005-05-15)
Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy was used to assess the effects of heat damage on carbon-fiber-reinforced polymer composites. Moisture-saturated graphite-epoxy laminates with a quasi-isotropic lay-up were heat-damaged above their upper service temperatures. The loss of matrix-dominated mechanical properties due to heat exposure was investigated in the laboratory under environmental testing conditions with mechanical tests, ultrasonic C-scanning, and DRIFT spectroscopy. The...
Nanocrystallization in Cu-Zr-Al-Sm Bulk Metallic Glasses
Sıkan, Fatih; Yaşar, Bengisu; KALAY, İLKAY (Springer Science and Business Media LLC, 2018-04-01)
The effect of rare-earth element (Sm) microalloying on the thermal stability and crystallization kinetics of melt-spun ribbons and suction-cast rods of Zr48Cu38.4Al9.6Sm4 alloy were investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD), transmission electron microscopy (TEM), and atom probe tomography (APT). The XRD results of constant heating rate annealing indicated that amorphous Zr48Cu38.4Al9.6Sm4 melt-spun ribbons devitrifies into Cu2Sm at 673 K (400 A degrees C). The sequ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Tarhan, “Ageing characteristics of copper based shape memory alloys,” Ph.D. - Doctoral Program, Middle East Technical University, 2004.