Radar propagation modelling using the split step parabolic equation method

Türkboyları, Alpaslan
This document describes radar propagation modelling using split step parabolic wave equation (PWE) method. A computer program using Fourier split-step (FSS) marching technique is developed for predicting the electromagnetic wave propagation in troposphere. The program allows specification of frequency, polarization, antenna radiation pattern, antenna altitude, elevation angle and terrain profile. Both staircase terrain modelling and conformal mapping are used to model the irregular terrain. Mixed Fourier transform is used to implement the impedance boundary conditions. The conditions and the limits of different approximations are stated. The propagation code, RPPT (Radar Propagation Prediction Tool) is developed in Matlab 6.0 with a user friendly GUI. Different PWE methods can be selected in RPPT for different applications. The results are presented as one-way propagation factor and path loss in decibels versus range.Comparisons are made between different PWE techniques and other propagation models to demonstrate the ability and accuracy of the present model to accommodate various situations. It is assumed that the reader is familiar with the tropospheric propagation.


Radar cross section analysis by shooting and bouncing rays method
Çakır, Mustafa Kağan; Tokdemir, Turgut; Department of Engineering Sciences (2015)
In this study, a MATLAB code incorporating `Shooting and Bouncing Rays (SBR) Method` is developed for calculating Radar Cross Section (RCS) of complex shapes. The code can calculate ray paths, magnetic current sheets, incident and scattered electric fields and RCS in horizontal, vertical and cross polarizations. While reflection effects are calculated by SBR algorithm, diffraction effects due to edges and corners are handled by `Equivalent Edge Currents (EEC’s)`. Wave frequency, aspect angle and number of r...
Monte Carlo analysis of the effects of the material and shape uncertainties on radar cross section by the finite difference time domain method
Kazar, Ali Kemal; Kuzuoğlu, Mustafa; Özgün, Özlem; Department of Electrical and Electronics Engineering (2013)
The aim of this research is to analyze the variations in Radar Cross Section (RCS) values of dielectric and conducting objects due to material and shape uncertainties by employing the Finite Difference Time Domain Method and the Monte Carlo approach in electromagnetic scattering problems. MATLAB codes are developed and validated to solve the electromagnetic scattering problem involving two and three dimensional arbitrarily-shaped objects. Basic principles of FDTD and its implementation in MATLAB are describ...
Analysis and design of conformal frequency selective surfaces /
Dalkılıç, Akın; Alatan, Lale; Department of Electrical and Electronics Engineering (2014)
An efficient analysis and design approach for conformal frequency selective surface (FSS) structures is developed. The design methodology involves the analysis of both the planar and curved FSS structures. First, planar unit cell analysis of conformal FSS models are accomplished for normal and oblique incidence cases. To prove conformal applicability of planar designs, a semi-finite analysis method is utilized. This method is based on solution of a singly periodic curved FSS structure of semi-cylinder shape...
Beamspace Approach for Detection of the Number of Coherent Sources
Candan, Çağatay; Koç, Seyit Sencer (2012-05-11)
A beamspace approach is presented to detect the multiplicity of impinging sources on the sensor array for the direction of arrival estimation problem. The method applies to the coherent signals and can also be used to detect the presence of interfering multipath signal. In many applications, the signal to noise ratio is not sufficient to resolve multiple sources with close spatial frequencies. The suggested method is to detect the presence of an interfering secondary source which can not be possibly resolved.
Optimization of vibration characteristics of a radar antenna structure
Baran, İsmet; Özgen, Gökhan Osman; Ciğeroğlu, Ender; Department of Mechanical Engineering (2011)
Radar antenna structures especially array antennas which are integrated onto structures of aerial vehicles are subject to dynamic structural and aerodynamic loads. Due to occurrences of these dynamic loads there will be certain dynamic deformations which affect the antenna’s performance in an adverse manner. The influence of deformations and vibrations are important on array antenna structures, since they cause a change in orientation of elements of the phased array antenna which affects the gain of the ant...
Citation Formats
A. Türkboyları, “Radar propagation modelling using the split step parabolic equation method,” M.S. - Master of Science, Middle East Technical University, 2004.