Hide/Show Apps

Experimental determination of transfer functions for a car body-in-white

Şentürk, Sabri
Vibration generated from various sources (engine, road surface, tires, exhaust, etc.) should be considered in the design of a car body. These vibrations travel through transfer systems (drivetrain, suspension, body, etc.) to the steering wheel, seats and other areas where it is detected by the passengers of the vehicle. Transmission routes must be studied and efforts made to keep transfer systems from amplifying vibration and to absorb it instead. Since the superior vibration transfer system is the car body, finite element analysis and experimental vibration analysis are performed on car body-in-white. Body vibration analysis entails understanding and improving the body̕s dynamic characteristics that act as vibration transfer channels. In the previous study, a finite element model has been created for a car body-in-white available in Automotive Laboratory (Mechanical Engineering Department, Middle East Technical University, Ankara) and its natural frequencies and mode shapes have been determined using finite element analysis software. In this study, vibration tests have been performed on actual car body-in-white. Frequency response functions between 34 response locations and force application point have been measured. Using these frequency response functions, natural frequencies and mode shapes of the body-in-white have been determined. Finite element analysis and experimental results have been compared to evaluate the finite element model reliability.