Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Quantum chemical study of geometrical and electronic structures of aromatic five membered heterocyclic oligomers in the ground and lowest singlet excited states
Download
index.pdf
Date
2004
Author
Öksüz, Nevin
Metadata
Show full item record
Item Usage Stats
134
views
67
downloads
Cite This
The nature of the ground state and the first (lowest) singlet excited state geometrical conformations and electronic transitions in the aromatic five-membered heterocyclic oligomers اoligothiophenes (nT), oligofurans (nF), and oligopyrroles (nP)- containing up to six monomer units (total of 18 molecules) were explored using several computational methodologies. Geometry optimizations were carried out at Austin Model 1 (AM1), Restricted Hartree-Fock (RHF/6-31G*), and Density Functional Theory (DFT, B3LYP/6-31G*) levels for the ground-state conformations of these structurally well-defined heterocyclic oligomers. The Configuration Interaction Singles (CIS) method with the 6-31G* basis set was chosen in computation of the optimal geometry of the lowest singlet excited state. Lowest singlet excitation S1βS0 energies were calculated using the Zerner̕s Intermediate Neglect of Differential Overlap for Spectroscopy (ZINDO/S), CIS (CIS/6-31G*), and Time-Dependent DFT (TDDFT/6-31G* and TDDFT/6-31+G*) methods. In computation of the emission S1àS0 energies, we have employed all methods above except ZINDO/S. In investigation of geometries of the ground and lowest singlet excited state, we compared the bond length alternation (BLA) parameters, Dri in the conjugated backbone of the oligomers. Saturation of the geometrical parameters at the center of oligomers was observed after a certain chain length. Among all methodologies used in computation of excitation (S1βS0) and emission (S1àS0) energies, TDDFT results showed the best agreement with experimental data. Fits of computed and experimental excitation energies to an exponential function using the least squares method enabled us to predict Effective Conjugation Length (ECL) values. We obtained the ECLs of 17 (17), 16 (15), and 14 (13) monomer units for polythiophene (PTh), polyfuran (PFu), and polypyrrole (PPr), which have very
Subject Keywords
Quantum chemistry.
URI
http://etd.lib.metu.edu.tr/upload/12605397/index.pdf
https://hdl.handle.net/11511/14475
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Quantum systems and representation theorem
Dosi, Anar (2013-09-01)
In this paper we investigate quantum systems which are locally convex versions of abstract operator systems. Our approach is based on the duality theory for unital quantum cones. We prove the unital bipolar theorem and provide a representation theorem for a quantum system being represented as a quantum -system.
Quantum mechanical calculation of nitrous oxide decomposition on transition metals
Karaöz, Muzaffer Kaan; Önal, Işık; Department of Chemical Engineering (2007)
Nitrous oxide decomposition on Ag51, Au51, Pt22, Rh51 and Ir51 clusters representing (111) surface were studied quantum mechanically by using the method of ONIOM with high layer DFT region and low layer of molecular mechanics region utilizing universal force field (UFF). The basis set employed in the DFT calculations is the Los Alamos LANL2DZ effective core pseudo-potentials (ECP) for silver, gold, platinum, rhodium and iridium and 3-21G** for nitrogen, oxygen and hydrogen. Nitrous oxide was decomposed on t...
Spontaneous Lorentz violation: the case of infrared QED
Balachandran, A. P.; Kürkcüoğlu, Seçkin; de Queiroz, A. R.; VAİDYA, SACHİN (2015-02-24)
It is by now clear that the infrared sector of quantum electrodynamics (QED) has an intriguingly complex structure. Based on earlier pioneering work on this subject, two of us recently proposed a simple modification of QED by constructing a generalization of the U(1) charge group of QED to the "Sky" group incorporating the well-known spontaneous Lorentz violation due to infrared photons, but still compatible in particular with locality (Balachandran and Vaidya, Eur Phys J Plus 128:118, 2013). It was shown t...
RELATIVISTIC DESCRIPTION OF HEAVY Q(Q)OVER-BAR BOUND-STATES
ZAKOUT, I; Sever, Ramazan (1994-10-01)
We study the relativistic description of heavy qqBAR bound states in the context of the relativistic wave equation. We used some attractive QCD based potentials where the vector part incorporates in the two loop perturbation QCD effects at short distances while the scalar part approaches the linear confining potential at large distances. We calculate the energy levels, leptonic and hadronic decay widths, as well as the E1 rate transition for ccBAR and bbBAR. Results are compared with their experimental v...
Transformations of entangled mixed states of two qubits
Alkuş, Ümit; Turgut, Sadi; Department of Physics (2013)
In this thesis, the entangled mixed states of two qubits are considered. In the case where the matrix rank of the corresponding density matrix is 2, such a state can be purified to a pure state of 3 qubits. By utilizing this representation, the classification of such states of two qubits by stochastic local operations assisted by classical communication (SLOCC) is obtained. Also for such states, the optimal ensemble that appears in the computation of the concurrence and entanglement of formation is obtained.
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. Öksüz, “Quantum chemical study of geometrical and electronic structures of aromatic five membered heterocyclic oligomers in the ground and lowest singlet excited states,” M.S. - Master of Science, Middle East Technical University, 2004.