Hide/Show Apps

Theoretical investigation of unimolecular reactions of cyclic c5h6 compounds by initio quantum chemical methods

Kınal, Armağan
Thermodynamic stabilities of eighteen cyclic C5H6 isomers were explored computationally both on singlet and triplet state potential energy surfaces (PES). All isomers have singlet ground states except for bicyclo[2.1.0]pent-5-ylidene (B5) having no stable geometry on the singlet C5H6 PES. Cyclopenta-1,3-diene (M1) is the most stable cyclic C5H6 isomer while cyclopent-1,4-diylidene is the least stable one among all. Cyclopenta-1,2-diene (M2) and cyclopentyne (M3) have biradical characters of 46.9 and 21.5%, respectively. Seven unimolecular isomerization reactions occurring among several of these molecules were investigated by DFT and ab initio methods. The conversion of bicyclo[2.1.0]pent-2-ene (B1) and tricyclo[,5]-pentane (T1) into 1,3-cyclopentadiene (M1) are shown to be concerted processes whose reaction paths pass through TSs with a high degree of biradical character. The reaction enthalpies (DH0) are predicted to be -47.7 kcal/mol for B1 and -63.8 kcal/mol for T1 at UB3LYP/6-31G(d) level. The activation enthalpy (DH0¹) for the ring opening of B1 was calculated by the CR-CCSD(T) method to be 25.2 kcal/mol, in good agreement with experiment. Furthermore, the DH0¹ for the ring opening of T1 was obtained by the CR-CCSD(T) method to be 48.2 kcal/mol. The self-conversion of M1 via 1,5-hydrogen shift is a facile and concerted reaction with aromatic TS. The DH0¹ estimations of B3LYP and CC methods are 25.24 and 28.78 kcal/mol, respectively. For 1,2-hydrogen shift reactions of cyclopent-3-enylidene (M4) and cyclopenten-2-ylidene (M5), the single point CC calculations predicted the DH0¹ values of 3.13 and 10.12 kcal/mol, as well as, the DH0 values of -71.28 and -64.05 kcal/mol, respectively. The reason of M5 being more stable than M4 is due to the conjugation of the carbene carbon and the double bond in M5. The reaction path of cyclobutylidene methylene to