Mathematical modelling of enzymatic reactions, simulation and parameter estimation

Download
2005
Özöğür, Süreyya
A deep and analytical understanding of the human metabolism grabbed attention of scientists from biology, medicine and pharmacy. Mathematical models of metabolic pathways offer several advances for this deep and analytical understanding due to their incompensable potential in predicting metabolic processes and anticipating appropriate interventions when required. This thesis concerns mathematical modeling analysis and simulation of metabolic pathways. These pathways include intracellular and extracellular compounds such as enzymes, metabolites, nucleotides and cofactors. Experimental data and available knowledge on metabolic pathways are used in constituting a mathematical model. The models are either in the form of nonlinear ordinary differential equations (ode's) or differential algebraic equations (dae's). These equations are composed of kinetic parameters such as kinetic rate constants, initial rates and concentrations of metabolites. The non-linear nature of enzymatic reactions and large number of parameters cause trouble in efficient simulation of those reactions. Metabolic engineering tries to simplify these equations by reducing the number of parameters. In this work, enzymatic system which includes Creatine Kinase, Hexokinase and Glucose 6-Phosphate Dehydrogenase (CK-HK-G6PDH) is modeled in the form of dae's, solved numerically and the system parameters are estimated. The numerical results are compared with the results from an existing work in literature. We demonstrated that, our solution method based on direct solution of the CK-HK-G6PDH system significantly from simplified solutions. We also showed that genetic algorithm(GA) for parameter estimation, provides much clear results to the experimental values of the metabolite, especially with NADPH. Keywords: metabolic engineering, kinetic modelling, biochemical reactions, enzymatic reactions, differential

Suggestions

Boundary value problems for higher order linear impulsive differential equations
Uğur, Ömür; Akhmet, Marat; Taşeli, Hasan; Department of Mathematics (2003)
The theory of impulsive di®erential equations has become an important area of research in recent years. Linear equations, meanwhile, are fundamental in most branches of applied mathematics, science, and technology. The theory of higher order linear impulsive equations, however, has not been studied as much as the cor- responding theory of ordinary di®erential equations. In this work, higher order linear impulsive equations at xed moments of impulses together with certain boundary conditions are investigated...
Analysis and prediction of gene expression patterns by dynamical systems, and by a combinatorial algorithm
Taştan, Mesut; Weber, Gerhard Wilhelm; Department of Scientific Computing (2005)
Modeling and prediction of gene-expression patterns has an important place in computational biology and bioinformatics. The measure of gene expression is determined from the genomic analysis at the mRNA level by means of microarray technologies. Thus, mRNA analysis informs us not only about genetic viewpoints of an organism but also about the dynamic changes in environment of that organism. Different mathematical methods have been developed for analyzing experimental data. In this study, we discuss the mode...
Oscillation of second order matrix equations on time scales
Selçuk, Aysun; Ağacık, Zafer; Department of Mathematics (2004)
The theory of time scales is introduced by Stefan Hilger in his PhD thesis in 1998 in order to unify continuous and discrete analysis. In our thesis, by making use of the time scale calculus we study the oscillation of nonlinear matrix differential equations of second order. the first chapter is introductory in nature and contains some basic definitions and tools of the time scales calculus, while certain well-known results have been presented with regard to oscillation of the solutions of second order matr...
Periodic solutions and stability of linear impulsive delay differential equations
ALZabut, Jehad; Ağacık, Zafer; Department of Mathematics (2004)
In this thesis, we investigate impulsive differential systems with delays of the form And more generally of the form The dissertation consists of five chapters. The first chapter serves as introduction, contains preliminary considerations and assertions that will be encountered in the sequel. In chapter 2, we construct the adjoint systems and obtain the variation of parameters formulas of the solutions in terms of fundamental matrices. The asymptotic behavior of solutions of systems satisfying the Perron co...
Energy bounds for some nonstandard problems in partial differential equations
Özer, Özge; Çelebi, Okay; Department of Mathematics (2005)
This thesis is a survey of the studies of Ames,Payne and Schaefer about the partial differential equations with nonstandard auxiliary conditions; this is where the values of the solution are prescribed as a combination of initial time t=0 and at a later time t=T. The first chaper is introductory and contains some historical background of the problem,basic definitions and theorems.In Chapter 2 energy bounds and pointwise bounds for the solutions of the nonstandard hyperbolic problems have been investigated a...
Citation Formats
S. Özöğür, “Mathematical modelling of enzymatic reactions, simulation and parameter estimation,” M.S. - Master of Science, Middle East Technical University, 2005.