Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Oscillation of second order matrix equations on time scales
Download
index.pdf
Date
2004
Author
Selçuk, Aysun
Metadata
Show full item record
Item Usage Stats
192
views
77
downloads
Cite This
The theory of time scales is introduced by Stefan Hilger in his PhD thesis in 1998 in order to unify continuous and discrete analysis. In our thesis, by making use of the time scale calculus we study the oscillation of nonlinear matrix differential equations of second order. the first chapter is introductory in nature and contains some basic definitions and tools of the time scales calculus, while certain well-known results have been presented with regard to oscillation of the solutions of second order matrix equations and some new oscillation criteria for the same type equations have been established in the second chapter.
Subject Keywords
Differential equations.
URI
http://etd.lib.metu.edu.tr/upload/12605606/index.pdf
https://hdl.handle.net/11511/14648
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Oscillation of second order dynamic equations on time scales
Kütahyalıoğlu, Ayşen; Ağacık, Zafer; Department of Mathematics (2004)
During the last decade, the use of time scales as a means of unifying and extending results about various types of dynamic equations has proven to be both prolific and fruitful. Many classical results from the theories of differential and difference equations have time scale analogues. In this thesis we derive new oscillation criteria for second order dynamic equations on time scales.
Periodic solutions and stability of linear impulsive delay differential equations
ALZabut, Jehad; Ağacık, Zafer; Department of Mathematics (2004)
In this thesis, we investigate impulsive differential systems with delays of the form And more generally of the form The dissertation consists of five chapters. The first chapter serves as introduction, contains preliminary considerations and assertions that will be encountered in the sequel. In chapter 2, we construct the adjoint systems and obtain the variation of parameters formulas of the solutions in terms of fundamental matrices. The asymptotic behavior of solutions of systems satisfying the Perron co...
Inverse problems for parabolic equations
Baysal, Arzu; Çelebi, Okay; Department of Mathematics (2004)
In this thesis, we study inverse problems of restoration of the unknown function in a boundary condition, where on the boundary of the domain there is a convective heat exchange with the environment. Besides the temperature of the domain, we seek either the temperature of the environment in Problem I and II, or the coefficient of external boundary heat emission in Problem III and IV. An additional information is given, which is the overdetermination condition, either on the boundary of the domain (in Proble...
Studies on the perturbation problems in quantum mechanics
Koca, Burcu; Taşeli, Hasan; Department of Mathematics (2004)
In this thesis, the main perturbation problems encountered in quantum mechanics have been studied.Since the special functions and orthogonal polynomials appear very extensively in such problems, we emphasize on those topics as well. In this context, the classical quantum mechanical anharmonic oscillators described mathematically by the one-dimensional Schrodinger equation have been treated perturbatively in both finite and infinite intervals, corresponding to confined and non-confined systems, respectively.
Boundary value problems for higher order linear impulsive differential equations
Uğur, Ömür; Akhmet, Marat; Taşeli, Hasan; Department of Mathematics (2003)
The theory of impulsive di®erential equations has become an important area of research in recent years. Linear equations, meanwhile, are fundamental in most branches of applied mathematics, science, and technology. The theory of higher order linear impulsive equations, however, has not been studied as much as the cor- responding theory of ordinary di®erential equations. In this work, higher order linear impulsive equations at xed moments of impulses together with certain boundary conditions are investigated...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
A. Selçuk, “Oscillation of second order matrix equations on time scales,” M.S. - Master of Science, Middle East Technical University, 2004.