Mass transfer and kinetics in oxygen delignification

Download
2005
Doğan, İsmail
In this study, the kinetic analysis of oxygen delignification of Turkish southern hardwood Kraft pulp was carried out. Kraft pulp was obtained from Mopak Dalaman pulp and paper mill. The kinetic rate data were collected in a 1 L high pressure batch reactor. The delignification experiments were carried out under a wide range of industrially significant conditions of temperature (90, 100 and 110 oC), alkali charge (1, 3, 5% on oven dry pulp), and oxygen partial pressure (0.5, 3.5, 6.5 bar). In order to achieve this objective, the study is separated into different stages. In the first stage of the work, the mass transfer effects were examined for different pulp consistencies. It was seen that the inter-fiber mass transfer resistances become negligible at the consistencies below 1%. Therefore, the experiments were performed at 0.5% consistency. In the following stage, the kinetics of oxygen delignification was studied and the governing rate equations were derived. Then, the kinetics of the carbohydrate degradation was analyzed in order to determine the extent of delignification without the reduction in the pulp strength. The delignification and the carbohydrate degredation rate during oxygen delignification increase with increasing in alkali concentration, oxygen partial pressure and temperature. However, the most effective parameters are the alkali concentration and temperature. The dimensionless terms for Kappa number, intrinsic viscosity and reaction time were used in order to generalize the results and to make them independent of the initial Kappa number, the intrinsic viscosity, experimental conditions and pulping conditions prior to oxygen delignification. These dimensionless parameters were fitted to nonlinear equations from which the control of the oxygen delignification towers can be done with a simple equation. The same approach was also used for the reported

Suggestions

Dimensionless parameter approach for oxygen delignification kinetics
Dogan, Ismail; Gueruez, Gueniz (American Chemical Society (ACS), 2008-08-20)
In this study, the kinetic analysis of oxygen delignification of Turkish southern hardwood Kraft pulp was carried out. The kinetic rate data were collected in a high pressure batch reactor at industrially significant conditions of temperature, alkali charge, and oxygen partial pressure. The mass transfer effects were examined for the system studied. After eliminating the mass transfer resistances in the delignification system, the kinetics of oxygen delignification was studied and the governing rate equatio...
Self reinforcement of poly(ethylene terephthalate) and polyyethyklene blends
Kurtuluş, Ceren; Bayram, Göknur; Department of Chemical Engineering (2007)
In this study, 20/80 (weight %) Poly(ethylene terephthalate) (PET) /High Density Polyethylene (HDPE) Microfibrillar Reinforced Composites (MFC) were prepared by using high density polyethylene (HDPE) as the matrix material, poly(ethylene terephthalate) (PET) as the reinforcing component. Ethylene n-butyl acrylate-glycidyl methacrylate (E-nBA-GMA) and ethylene methyl acrylate (E-MA) as the compatibilizers in 1, 5, and 10 wt. %. The objective of this study is to produce MFCs based on PET and HDPE via extrusio...
Effect of welding parameters on the susceptibility to hydrogen cracking in line pipe steels in sour environments
Yavaş, Özgür; Doruk, Mustafa; Department of Metallurgical and Materials Engineering (2006)
In this study, hydrogen induced cracking (HIC) behavior of welded steels used in petroleum lines under sour petroleum environments was investigated. The testing environment in NACE TM0284-2003 standard was used in order to simulate sour petroleum environment. In order to investigate behavior of welding parameters, used in pipe production, on HIC, welds were done with different line energies. Two different API X-65 steels were used in welding operations. The specimens taken from welded zones were tested in t...
Production and characterization of polypropylene/organoclay nanocomposites
Yayla, Saniye; Yılmazer, Ülkü; Department of Chemical Engineering (2007)
Polypropylene, PP, based nanocomposites were produced via melt blending method by using twin-screw extrusion in this study. The effects of organoclay type, compatibilizer type, and mixing order of components on the morphology, thermal, mechanical and flow properties of ternary nanocomposites were investigated. Terpolymer of ethylene/butyl acrylate/maleic anhydride, ethylene/methyl acrylate/glycidyl methacrylate, and copolymer of ethylene/glycidyl methacrylate elastomers were used as compatibilizer, whereas ...
Utilization of fly ash from fluidized bed combustion of a Turkish lignite in production of blended cements
Kürkçü, Mehmet; Selçuk, Nevin; Department of Chemical Engineering (2006)
Fly ashes generated from fluidized bed combustion of low calorific value, high ash content Turkish lignites are characterized by high content of acidic oxides, such as SiO2, Al2O3 and Fe2O3, varying in the range 50-70%. However, there exists no study for the investigation of the possibility of using these ashes as concrete admixture. Therefore, in this study, characterization of fly ashes from fluidized bed combustion of a Turkish lignite and evaluation of these fly ashes as a substitute for Portland cement...
Citation Formats
İ. Doğan, “Mass transfer and kinetics in oxygen delignification,” Ph.D. - Doctoral Program, Middle East Technical University, 2005.