Determination of flow units for carbonate reservoirs by petrophysical - based methods

Download
2005
Yıldırım Akbaş, Ceylan
Characterization of carbonate reservoirs by flow units is a practical way of reservoir zonation. This study represents a petrophysical-based method that uses well loggings and core plug data to delineate flow units within the most productive carbonate reservoir of Derdere Formation in Y field, Southeast Turkey. Derdere Formation is composed of limestones and dolomites. Logs from the 5 wells are the starting point for the reservoir characterization. The general geologic framework obtained from the logs point out for discriminations within the formation. 58 representative core plug data from 4 different wells are utilized to better understand the petrophysical framework of the formation. The plots correlating petrophysical parameters and the frequency histograms suggest the presence of distinctive reservoir trends. These discriminations are also represented in Winland porosity-permeability crossplots resulted in clusters for different port-sizes that are responsible for different flow characteristics. Although the correlation between core plug porosity and air permeability yields a good correlation coefficient, the formation has to be studied within units due to differences in port-sizes and reservoir process speed. Linear regression and multiple regression analyses are used for the study of each unit. The results are performed using STATGRAPH Version Plus 5.1 statistical software. The permeability models are constructed and their reliabilities are compared by the regression coefficients for predictions in un-cored sections. As a result of this study, 4 different units are determined in the Derdere Formation by using well logging data, and core plug analyses with the help of geostatistical methods. The predicted permeabilities for each unit show good correlations with the calculated ones from core plugs. Highly reliable future estimations can be based on the derived

Suggestions

A matematical modeling study on the feasibility of disposing partially treated domestic wastewater using soil pile systems
Altınoklar, Hatice; Ünlü, Kahraman; Department of Environmental Engineering (2006)
The soil pile system (SPS) is a wastewater infiltration system used for secondary and tertiary treatment of wastewater. The purpose of this study is to perform a feasibility study to assess the applicability of SPS for treatment and safe disposal of domestic wastewaters, using a simplistic steady-state flow analytical modeling and a numerical transient unsaturated flow and transport modeling approaches. It is also aimed to develop guidelines for the design and operation of field scale SPS using the results ...
AN EXPERIMENTAL INVESTIGATION OF POLYVINYL-CHLORIDE) EMULSION POLYMERIZATION - EFFECT OF INITIATOR AND EMULSIFIER CONCENTRATIONS ON POLYMERIZATION KINETICS AND PRODUCT PARTICLE-SIZE
Karakaş, Gürkan (Wiley, 1989-01-01)
Effects of concentration changes in initiator species Na2SO3, (NH4)2S2O8 and CuSO4, and emulsifier, ammonium stearate, on poly(vinyl chloride) (PVC) emulsion polymerization kinetics and on product particle size were experimentally investigated. It was observed that to obtain industrially significant rates and overall conversions, not only an optimum concentration ratio of Na2SO3/(NH4)2S2O8/CuSO 4 must be used, but also the concentrations of these species must be above certain limits. Increasing the concentr...
Simulation of depleted gas reservoir for underground gas storage
Öztürk, Bülent; Bağcı, Suat; Department of Petroleum and Natural Gas Engineering (2004)
For a natural gas importing country, أtake or payؤ approach creates problems since the demand for natural gas varies during the year and the excess amount of natural gas should be stored. In this study, an underground gas storage project is evaluated in a depleted gas Field M. After gathering all necessary reservoir, fluid, production and pressure data, the data were adapted to computer language, which was used in a commercial simulator software (IMEX) that is the CMG̕s (Computer Modelling Group) new genera...
Foam characterization : bubble size and texture effects
Eren, Tuna; Özbayoğlu, Mehmet Evren; Department of Petroleum and Natural Gas Engineering (2004)
Foam is one of the most frequently used multiphase fluids in underbalanced drilling operations because of its high carrying capacity of cuttings, compressibility property, formation fluid influx handling, etc. Foam rheology has been studied for many years. Researchers tried to explain foam behaviour by using conventional methods, i.e., determining rheological parameters of pre-defined rheological models like Power law, Bingham Plastic etc., as a function of gas ratio. However, it is known that bubble size a...
Calculation of the thermodynamic functions using a mean field model for the fluid-solid transition in nitrogen
AKAY, Özge; Yurtseven, Hasan Hamit (Romanian Academy - Revue Roumaine De Chimie, 2020-05-01)
Temperature and pressure dependence of the thermodynamic quantities are calculated using the Landau phenomenological model for the first order fluid-solid transition in nitrogen. This calculation is performed by fitting the phase line equation as derived from the mean field model to the observed T-P phase diagram of the fluid-solid transition in N2 from the literature. Our calculations show that the order parameter and the inverse susceptibility decrease whereas the entropy, heat capacity, thermal expansion...
Citation Formats
C. Yıldırım Akbaş, “Determination of flow units for carbonate reservoirs by petrophysical - based methods,” M.S. - Master of Science, Middle East Technical University, 2005.