An approximate model for kanban controlled assembly systems

Download
2005
Topan, Engin
In this thesis, an approximation is proposed to evaluate the steady-state performance of kanban controlled assembly systems. The approximation is developed for the systems with two components making up an assembly. Then, it is extended to systems with more than two components. A continuous-time Markov model is aggregated keeping the model exact, and this aggregate model is approximated replacing some state-dependent transition rates with constant rates. Decomposition of the approximate aggregate model into submodels guarantees product-form steady-state distribution for each subsystem. Finally, submodels are combined in such a way that the size of the problem becomes independent of the number of kanbans. This brings about the computational advantage in solving the combined model using numerical matrix-geometric solution algorithms. Based on the numerical comparisons with simulation, the exact model, an approximate aggregate model and another approximation in a previous study in the literature, the approximation is observed to be good in terms of accuracy with respect to computational burden and has the potential to be a building block for the analysis of systems that are more complex but closer to real-life applications.

Suggestions

An approximation for kanban controlled assembly systems
TOPAN, Engin; Avşar, Zeynep Müge (Springer Science and Business Media LLC, 2011-01-01)
An approximation is proposed to evaluate the steady-state performance of kanban controlled two-stage assembly systems. The development of the approximation is as follows. The considered continuous-time Markov chain is aggregated keeping the model exact, and this aggregate model is approximated replacing some state-dependent transition rates with constant rates. The approximate aggregate model is, then, decomposed into submodels and a product-form steady-state distribution is obtained for each submodel. Fina...
Dissimilarity maximization method for real-time routing of parts in random flexible manufacturing systems
Saygin, C; Kilic, SE (Springer Science and Business Media LLC, 2004-04-01)
This paper presents a dissimilarity maximization method (DMM) for real-time routing selection and compares it via simulation with typical priority rules commonly used in scheduling and control of flexible manufacturing systems (FMSs). DMM aims to reduce the congestion in the system by selecting a routing for each part among its alternative routings such that the overall dissimilarity among the selected routings is maximized. In order to evaluate the performance of DMM, a random FMS, where the product mix is...
Neural network calibrated stochastic processes: forecasting financial assets
Giebel, Stefan; Rainer, Martin (Springer Science and Business Media LLC, 2013-03-01)
If a given dynamical process contains an inherently unpredictable component, it may be modeled as a stochastic process. Typical examples from financial markets are the dynamics of prices (e.g. prices of stocks or commodities) or fundamental rates (exchange rates etc.). The unknown future value of the corresponding stochastic process is usually estimated as the expected value under a suitable measure, which may be determined from distribution of past (historical) values. The predictive power of this estimati...
A survey on OR and mathematical methods applied on gene-environment networks
Weber, Gerhard Wilhelm; Kropat, Erik; Öztürk, Başak; Gorgulu, Zafer-Korcan (Springer Science and Business Media LLC, 2009-09-01)
In this paper, we survey the recent advances and mathematical foundations of gene-environment networks. We explain their interdisciplinary implications with special regard to human and life sciences as well as financial sciences. Special attention is paid to applications in Operational Research and environmental protection. Originally developed in the context of modeling and prediction of gene-expression patterns, gene-environment networks have proved to provide a conceptual framework for the modeling of dy...
On the classical Maki-Thompson rumour model in continuous time
Belen, Selma; Kropat, Erik; Weber, Gerhard Wilhelm (Springer Science and Business Media LLC, 2011-03-01)
In this paper, the Maki-Thompson model is slightly refined in continuous time, and a new general solution is obtained for each dynamics of spreading of a rumour. It is derived an equation for the size of a stochastic rumour process in terms of transitions. We give new lower and upper bounds for the proportion of total ignorants who never learned a rumour and the proportion of total stiflers who either forget the rumour or cease to spread the rumour when the rumour process stops, under general initial condit...
Citation Formats
E. Topan, “An approximate model for kanban controlled assembly systems,” M.S. - Master of Science, Middle East Technical University, 2005.