Effects of masonry infill walls on the seismic performance of buildings

Download
2005
Öztürk, Mehmet Selim
In Turkey, in most of the reinforced concrete buildings, hallow masonry infill walls are used as a non-structural element, during design stage, their contribution to overall building behavior is not well known. Observations made after the earthquakes revealed that these non-structural elements had beneficial effects on the lateral capacity of the building. In this study, the contribution of the hallow masonry infill walls to the lateral behavior of reinforced concrete buildings was investigated. For this purpose, two different buildings were chosen as case studies. Three and six story symmetric buildings are modeled as bare and infilled frames. The parameters that were investigated are column area, infill wall area, distribution of masonry infill walls throughout the story. To determine the effect of each parameter, global drift ratios are computed and are compared for each case.

Suggestions

Evaluation of performance based displacement limits for reinforced concrete columns under flexure
Solmaz, Taylan; Yakut, Ahmet; Department of Civil Engineering (2010)
Reinforced concrete frame buildings are the most common type of constructions in Turkey which are exposed to various types of forces during their lifetime. Seismic performance of reinforced concrete frame buildings is dominated by columns which can be classified as primary members of these structures. When current codes are considered, all of them contain several provisions in order to implement reliable seismic performances of reinforced concrete columns. In order to evaluate the accuracy of these provisio...
Component based seismic vulnerability assessment procedure for rc buildings
Erduran, Emrah; Yakut, Ahmet; Department of Civil Engineering (2005)
A detailed seismic performance assessment procedure has been developed for reinforced concrete frame buildings with masonry in-fill walls and reinforced concrete frames including shear walls. The procedure uses member damage functions, in terms of inter-story drift ratios, developed for the primary components: columns, beams, in-fill walls and shear walls. Analytical investigations carried out to determine the influence of a number of parameters on the damageability of components were combined with existing...
A simple seismic performance assessment technique for unreinforced brick masonry structures
Aldemir, Alper; Erberik, Murat Altuğ; Department of Civil Engineering (2010)
There are many advantages of masonry construction like widespread geographic availability in many forms, colors and textures, comparative cheapness, fire resistance, thermal and sound insulation, durability, etc. For such reasons, it is still a commonly used type of residential construction in rural and even in urban regions. Unfortunately, its behavior especially under the effect of earthquake ground motions has not been identified clearly because of its complex material nature. Hence, the masonry building...
Evaluation of the Predictive Models for Stiffness, Strength, and Deformation Capacity of RC Frames with Masonry Infill Walls
Turgay, Tahsin; Durmus, Meril Cigdem; Binici, Barış; Ozcebe, Guney (American Society of Civil Engineers (ASCE), 2014-10-01)
Buildings with masonry infill walls (MIWs) in reinforced concrete (RC) frames are commonly used all around the world. It is well known that infill walls may affect the strength, stiffness, and displacement ductility of the structural system. Different approaches have been adopted in different codes and guidelines to consider the stiffness and strength contribution of MIWs on RC frame behavior. This study compares the ability of the existing guidelines to estimate stiffness, strength, and deformability of RC...
Cost-benefit analysis for various rehabilitation strategies
Çetinceli, Serkan; Yakut, Ahmet; Department of Civil Engineering (2005)
Over the last decade, six major earthquakes that occurred in Turkey dramatically demonstrated the poor performance of the buildings that were designed and constructed far from Turkish seismic code̕s requirements. The Marmara region, where most of the population and industry is located, is in the active seismic zone. With the rising cost of damages due to earthquakes, the necessity of the cost-benefit analysis for various rehabilitation strategies used in existing buildings has become a major concern for the...
Citation Formats
M. S. Öztürk, “Effects of masonry infill walls on the seismic performance of buildings,” M.S. - Master of Science, Middle East Technical University, 2005.