Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Scalar waves in spacetimes with closed timelike curves
Download
index.pdf
Date
2005
Author
Buğdaycı, Necmi
Metadata
Show full item record
Item Usage Stats
83
views
27
downloads
Cite This
The existence and -if exists- the nature of the solutions of the scalar wave equation in spacetimes with closed timelike curves are investigated. The general properties of the solutions on some class of spacetimes are obtained. Global monochromatic solutions of the scalar wave equation are obtained in flat wormholes of dimensions 2+1 and 3+1. The solutions are in the form of infinite series involving cylindirical and spherical wave functions and they are elucidated by the multiple scattering method. Explicit solutions for some limiting cases are illustrated as well. The results of 2+1 dimensions are verified by using numerical methods.
Subject Keywords
Electromagnetic theory.
URI
http://etd.lib.metu.edu.tr/upload/12607107/index.pdf
https://hdl.handle.net/11511/15852
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Effective Mass Quantum Systems with Displacement Operator: Inverse Square Plus Coulomb-Like Potential
Arda, Altug; Sever, Ramazan (2015-10-01)
The Schrodinger-like equation written in terms of the displacement operator is solved analytically for a inverse square plus Coulomb-like potential. Starting from the new Hamiltonian, the effects of the spatially dependent mass on the bound states and normalized wave functions of the "usual" inverse square plus Coulomb interaction are discussed.
Value sets of Lattes maps over finite fields
Küçüksakallı, Ömer (Elsevier BV, 2014-10-01)
We give an alternative computation of the value sets of Dickson polynomials over finite fields by using a singular cubic curve. Our method is not only simpler but also it can be generalized to the non-singular elliptic case. We determine the value sets of Lattes maps over finite fields which are rational functions induced by isogenies of elliptic curves with complex multiplication.
Effective-mass Dirac equation for Woods-Saxon potential: Scattering, bound states, and resonances
AYDOĞDU, OKTAY; Arda, Altug; Sever, Ramazan (2012-04-01)
Approximate scattering and bound state solutions of the one-dimensional effective-mass Dirac equation with the Woods-Saxon potential are obtained in terms of the hypergeometric-type functions. Transmission and reflection coefficients are calculated by using behavior of the wave functions at infinity. The same analysis is done for the constant mass case. It is also pointed out that our results are in agreement with those obtained in literature. Meanwhile, an analytic expression is obtained for the transmissi...
EXACT BOUND STATES OF THE D-DIMENSIONAL KLEIN-GORDON EQUATION WITH EQUAL SCALAR AND VECTOR RING-SHAPED PSEUDOHARMONIC POTENTIAL
IKHDAİR, SAMEER; Sever, Ramazan (World Scientific Pub Co Pte Lt, 2008-09-01)
We present the exact solution of the Klein Gordon equation in D-dimensions in the presence of the equal scalar and vector pseudoharmonic potential plus the ring-shaped potential using the Nikiforov-Uvarov method. We obtain the exact bound state energy levels and the corresponding eigen functions for a spin-zero particles. We also find that the solution for this ring-shaped pseudoharmonic potential can be reduced to the three-dimensional (3D) pseudoharmonic solution once the coupling constant of the angular ...
Ray anlaysis of electromagnetic scattering from semi-infinite array of dipoles in free space
Polat, Özgür Murat; Aydın Çivi, Hatice Özlem; Department of Electrical and Electronics Engineering (2007)
Electromagnetic wave scattering from a semi-infinite array of dipoles in free space is described by using asymptotic high frequency methods. An electric field integral expression is obtained and solved with asymptotic high frequency methods. An asymptotic field expression is obtained for a finite × infinite array of dipoles in free space. The analytical closed form expression for the array guided surface wave launching coefficient is obtained via a combination of an asymptotic high frequency analysis of a r...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
N. Buğdaycı, “Scalar waves in spacetimes with closed timelike curves,” Ph.D. - Doctoral Program, Middle East Technical University, 2005.