Determination of the most suitable wavelength intervals for optical data transmission through the atmosphere

Özer, Yücel Cengiz
Optical Wireless Communication systems use lasers offering larger bandwidth, which facilitates higher data rates, comparing with radio communication systems. However, its performance is limited by atmospheric conditions, and is a function of wavelength. The objective of this study is the determination of the wavelength interval(s) at which the atmospheric transmittance is relatively high and has relatively low dependence on variations in temperature, relative humidity, wind speed and atmospheric pressure under the conditions such as path altitude of 10 meters, path geometry of horizontal to the Earth’s surface and clean (includes no fog, rain or snow etc.) over sea surface atmosphere. The path length is taken to be 15 km. Alanya was assignated as geographical region and the required information about the atmospheric constituents and meteorological parameters was collected. Then, the variations in atmospheric transmittance due to the periodically measured meteorological parameters were calculated (for summer and winter seasons). Finally, individually calculated effects of these parameters on atmospheric transmittance are assembled in order to determine the desired wavelength interval(s). As a result, the most suitable wavelength interval was determined to be about between 3.99 m and 4.02 m. In addition, dependencies of atmospheric pressure, temperature, relative humidity, and wind speed on atmospheric transmittance have been established for both winter and summer seasons. Atmospheric transmittance is found to be inversely proportional to temperature, relative humidity and wind speed. The effect of pressure is relatively small comparing with other parameters.


Design of dual-frequency probe-fed microstrip antennas with genetic optimization algorithm
Ozgun, O; Mutlu, S; Aksun, MI; Alatan, Lale (2003-08-01)
Dual-frequency operation of antennas has become a necessity for many applications in recent wireless communication systems, such as GPS, GSM services operating at two different frequency bands, and services of PCS and IMT-2000 applications. Although there are various techniques to achieve dual-band operation from various types of microstrip antennas, there is no efficient design tool that has been incorporated with a suitable optimization algorithm. In this paper, the cavity-model based simulation tool alon...
An Analytical Model for Bounded WSNs with Unreliable Cluster Heads and Links
Omondi, Fredrick A.; Shah, Purav; Gemikonakli, Orhan; Ever, Enver (2015-10-29)
In Wireless Sensor Networks (WSNs), performance and availability are important in providing Quality of Service (QoS). WSNs are prone to failures that may result from software and hardware malfunctions, battery drain, tampering and link failures. In addition, sensors are resource constrained in terms of inadequate processing capacity, limited storage memory and restricted power supply. Alternating sensor operations between sleep and active modes whilst saving energy, has also introduced more challenges to th...
Linearization of RF power amplifiers with memoryless baseband predistortion method
Kolcuoğlu, Turusan; Demir, Şimşek; Department of Electrical and Electronics Engineering (2011)
In modern wireless communication systems, advanced modulation techniques are used to support more users by handling high data rates and to increase the utilization efficiency of the limited RF spectrum. These techniques are sensitive to the nonlinear distortions due to their high peak to average power ratios. Main source of nonlinear distortion in transmitter topologies are power amplifiers that determine the overall efficiency and linearity of the transmitter. To increase linearity without sacrificing effi...
Evaluation of a Duty-cycled Protocol for TDMA-Based Wireless Sensor Networks
Hasan, Mohammed Zaki; Al-Turjman, Fadi; Al-Rizzo, Hussain (2016-09-09)
Contention-free Medium Access Control (MAC) protocols in Wireless Sensor Networks (WSNs) have higher energy efficiency and lower packet latency than contention-based ones due to reduced idling and allow efficient utilization of energy supplies of sensors. This paper presents evaluation the performance of Time Division Multiple Access (TDMA) dutycycled MAC for multihop WSNs. We propose a semi-Markov chains by considering power consumption in different operational models to analyze the Quality of Services (Qo...
Increasing energy efficiency of rule-based fuzzy clustering algorithms using CLONALG-M for wireless sensor networks
Sert, Seyyit Alper; Yazıcı, Adnan (2021-09-01)
Because of its efficiency, clustering is used for effective communication in Wireless Sensor Networks (WSNs). In the WSN clustering area, fuzzy approaches are found to be superior to crisp cluster counterparts when the boundaries between clusters are unclear. As a result, many studies have proposed some fuzzy-based solutions to the cluster problem in WSNs. Most rule-based fuzzy clustering systems employ field experts in trial and error processes, identifying and defining fuzzy rules as well as the forms of ...
Citation Formats
Y. C. Özer, “Determination of the most suitable wavelength intervals for optical data transmission through the atmosphere,” M.S. - Master of Science, Middle East Technical University, 2006.