Numerical and experimental investigation of fatigue life in deep drawn parts

Download
2006
Aytekin, Oğuz
Sheet metal forming has an important place among metal forming processes. As the usage of sheet metal increases, the fatigue simulation and optimization of these parts become more important. This thesis study examines the change of the fatigue life of a sheet metal part after forming. A sphere-like shape is deep drawn and change in thickness and residual stresses are analyzed. To understand the effect of residual stresses, deep drawn parts with and without residual stress tested against the fatigue failure. In parallel, the forming process is simulated with an implicit finite element method (FEM). The success of forming simulation is discussed in the study. Thickness changes and residual stresses calculated with FEM are included in computer aided fatigue analysis. The effect of thickness changes is examined with the results of FEM analysis. The effectiveness of the whole simulation process is discussed by comparing the outputs of experiments and computational analysis.

Suggestions

Application of ring beam stiffness criterion for discretely supported shells under global shear and bending
Topkaya, Cem (SAGE Publications, 2018-12-01)
Silos in the form of a cylindrical metal shell are commonly elevated to provide access to the space beneath. In general, a few discrete column supports at evenly spaced intervals are commonly utilized. The presence of discrete supports results in circumferential non-uniformity in the axial compressive stress above the support. Depending on the size of the structure, several different support arrangements may be chosen. A stiff ring beam is utilized in larger silos to transfer and evenly distribute the discr...
Determination of the elastic properties of amorphous materials: Case study of alkali-silica reaction gel
Moon, Juhyuk; Speziale, Sergio; Akgül, Çağla; KALKAN, BORA; Clark, Simon M; Monteiro, Paulo JM (Elsevier BV, 2013-12-01)
The gel formed during alkali-silica reaction (ASR) can lead to cracking and deterioration of a concrete structure. The elastic properties of the ASR gel using X-ray absorption and Brillouin spectroscopy measurements are reported. X-ray absorption was used to determine the density of the gel as a function of pressure, and the result yields an isothermal bulk modulus of 33 +/- 2 GPa. Brillouin spectroscopy was applied to measure isentropic bulk (24.9-34.0 GPa) and shear moduli (8.7-10.1 GPa) of the gel. The r...
An investigation on compatibility properties of exterior finish coats for insulated walls in terms of water vapour pemeability and modulus ofelasticity
Örs, Kerime; Tavukçuoğlu, Ayşe; Department of Building Science in Architecture (2006)
The compatibility properties of some contemporary finish coats together with their complementary layers used in insulated exterior walls were examined in terms of water vapour permeability and modulus of elasticity. Basic physical and mechanical properties of some synthetic-, cement- and polymer-based external finish coats were analyzed in laboratory. Some additional samples, complementing the wall section, were also examined for their water vapour permeability. Results showed that the finish coats were hig...
Influence of the shape and roughness of inclusions on the rheological properties of a cementitious suspension
Erdoğan, Sinan Turhan; Ferraris, C. F.; Fowler, D. W. (Elsevier BV, 2008-05-01)
The influence of particle shape and surface roughness on the rheological properties of cementitious composites (cement paste plus coarse and fine particles) was investigated for mixtures of mortars and laboratory-made aggregates. The coarse particles were monosized spheres and cubes made from mortar, and monosized glass spheres, uncoated or roughened. The fine particles were uncoated or roughened monosized glass mini-spheres. The coarse particle mixtures were tested with a concrete rheometer to investigate ...
Experimental and modelling study on nonlinear time-dependent behaviour of thin spray-on liner
Güner, Doğukan; Öztürk, Hasan (Elsevier BV, 2019-02-01)
Thin spray-on liners (TSLs) are fast-setting multi component polymeric materials applied on rock or coal surface with a thickness of 2-5 mm that have fairly high tensile strength, adhesion, and elongation capabilities. Compared to conventional surface support elements, TSLs with polymer content exhibit different material responses over time. As a matter of fact, the creep behaviour of TSLs under a constant load has a significance for the evaluation of the long term performances of TSLs. This paper investiga...
Citation Formats
O. Aytekin, “Numerical and experimental investigation of fatigue life in deep drawn parts,” M.S. - Master of Science, Middle East Technical University, 2006.