Segmentation of torso ct images

Download
2006
Demirkol, Onur Ali
Medical imaging modalities provide effective information for anatomic or metabolic activity of tissues and organs in the body. Therefore, medical imaging technology is a critical component in diagnosis and treatment of various illnesses. Medical image segmentation plays an important role in converting medical images into anatomically, functionally or surgically identifiable structures, and is used in various applications. In this study, some of the major medical image segmentation methods are examined and applied to 2D CT images of upper torso for segmentation of heart, lungs, bones, and muscle and fat tissues. The implemented medical image segmentation methods are thresholding, region growing, watershed transformation, deformable models and a hybrid method; watershed transformation and region merging. Moreover, a comparative analysis is performed among these methods to obtain the most efficient segmentation method for each tissue and organ in torso. Some improvements are proposed for increasing accuracy of some image segmentation methods.

Suggestions

An integrated, dynamic model for cardiovascular and pulmonary systems
Yılmaz, Neval A; Eyüboğlu, Behçet Murat; Department of Electrical and Electronics Engineering (2006)
In this thesis an integrated, dynamic model for cardiovascular and respiratory systems has been developed. Models of cardiopulmonary system, airway mechanics and gas exchange that preexisted in literature have been reviewed, modified and combined. Combined model composes the systemic and pulmonary circulations, left/right ventricles, tissue/lung compartments, airway/lung mechanics and gas transportation. Airway resistance is partitioned into three parts (upper, middle, small airways). A collapsible airways ...
Parallel implementation of the boundary element method for electromagnetic source imaging of the human brain
Ataseven, Yoldaş; Gençer, Nevzat Güneri; Department of Electrical and Electronics Engineering (2005)
Human brain functions are based on the electrochemical activity and interaction of the neurons constituting the brain. Some brain diseases are characterized by abnormalities of this activity. Detection of the location and orientation of this electrical activity is called electro-magnetic source imaging (EMSI) and is of signi cant importance since it promises to serve as a powerful tool for neuroscience. Boundary Element Method (BEM) is a method applicable for EMSI on realistic head geometries that generates...
Solving the forward problem of electrical source imaging by applying the reciprocal approach and the finite difference method
Ahi, Sercan Taha; Gençer, Nevzat Güneri; Department of Electrical and Electronics Engineering (2007)
One of the goals of Electroencephalography (EEG) is to correctly localize brain activities by the help of voltage measurements taken on scalp. However, due to computational difficulties of the problem and technological limitations, the accuracy level of the activity localization is not perfect and should be improved. To increase accuracy level of the solution, realistic, i.e. patient dependent, head models should be created. Such head models are created via assigning realistic conductivity values of head ti...
Use of genetic algorithm for selection of regularization parameters in multiple constraint inverse ECG problem
Mazloumi Gavgani, Alireza; Serinağaoğlu Doğrusöz, Yeşim; Department of Electrical and Electronics Engineering (2011)
The main goal in inverse and forward problems of electrocardiography (ECG) is to better understand the electrical activity of the heart. In the forward problem of ECG, one obtains the body surface potential (BSP) distribution (i.e., the measurements) when the electrical sources in the heart are assumed to be known. The result is a mathematical model that relates the sources to the measurements. In the inverse problem of ECG, the unknown cardiac electrical sources are estimated from the BSP measurements and ...
3D marker tracking for human gait analysis
Küçük, Can; Halıcı, Uğur; Department of Electrical and Electronics Engineering (2005)
This thesis focuses on 3D marker tracking for human gait analysis. In KISS Gait Analysis System at METU, a subject's gait is recorded with 6 cameras while 13 reflective markers are attached at appropriate locations on his/her legs and feet. These images are processed to extract 2 dimensional (2D) coordinates of the markers in each camera. The 3 dimensional (3D) coordinates of the markers are obtained by processing the 2D coordinates of the markers with linearization and calibration algorithms. Then 3D traje...
Citation Formats
O. A. Demirkol, “Segmentation of torso ct images,” M.S. - Master of Science, Middle East Technical University, 2006.