Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Solving the forward problem of electrical source imaging by applying the reciprocal approach and the finite difference method
Download
index.pdf
Date
2007
Author
Ahi, Sercan Taha
Metadata
Show full item record
Item Usage Stats
228
views
57
downloads
Cite This
One of the goals of Electroencephalography (EEG) is to correctly localize brain activities by the help of voltage measurements taken on scalp. However, due to computational difficulties of the problem and technological limitations, the accuracy level of the activity localization is not perfect and should be improved. To increase accuracy level of the solution, realistic, i.e. patient dependent, head models should be created. Such head models are created via assigning realistic conductivity values of head tissues onto realistic tissue positions. This study initially focuses on obtaining patient dependent spatial information from T1-weighted Magnetic Resonance (MR) head images. Existing segmentation algorithms are modified according to our needs for classifying eye tissues, white matter, gray matter, cerebrospinal fluid, skull and scalp from volumetric MR head images. Determination of patient dependent conductivity values, on the other hand, is not considered as a part of this study, and isotropic conductivity values anticipated in literature are assigned to each segmented MR-voxel accordingly. Upon completion of the tissue classification, forward problem of EEG is solved using the Finite Difference (FD) method employing a realistic head model. Utilization of the FD method aims to lower computational complexity and to simplify the process of mesh creation for brain, which has a very complex boundary. Accuracy of the employed numerical method is investigated both on Electrical Impedance Tomography (EIT) and EEG forward problems, for which analytical solutions are available. The purpose of EIT forward problem integration into this study is to evaluate reciprocal solution of the EEG forward problem.
Subject Keywords
Electronics.
URI
http://etd.lib.metu.edu.tr/upload/12608717/index.pdf
https://hdl.handle.net/11511/17141
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Analysis of coupled lines in microwave printed circuit elements
Piroğlu, Şefika Özkal; Dural Ünver, Mevlüde Gülbin; Department of Electrical and Electronics Engineering (2007)
Full wave analysis of microstrip lines at microwave frequencies is performed by using method of moments in conjunction with closed-form spatial domain Green’s functions. The Green’s functions are in general Sommerfeld-type integrals which are computationally expensive. To improve the efficiency of the technique, Green’s functions are approximated by their closed-forms. Microstrip lines are excited by arbitrarily located current sources and are terminated by complex loads at both ends. Current distributions ...
Parallel implementation of the boundary element method for electromagnetic source imaging of the human brain
Ataseven, Yoldaş; Gençer, Nevzat Güneri; Department of Electrical and Electronics Engineering (2005)
Human brain functions are based on the electrochemical activity and interaction of the neurons constituting the brain. Some brain diseases are characterized by abnormalities of this activity. Detection of the location and orientation of this electrical activity is called electro-magnetic source imaging (EMSI) and is of signi cant importance since it promises to serve as a powerful tool for neuroscience. Boundary Element Method (BEM) is a method applicable for EMSI on realistic head geometries that generates...
Analysis and design of passive microwave and optical devices using the multimode interference technique
Sunay, Ahmet Sertaç; Birand, Mehmet Tuncay; Department of Electrical and Electronics Engineering (2005)
The Multimode Interference (MMI) mechanism is a powerful toool used in the analysis and design of a certain class of optical, microwave and millimeter wave devices. The principles of the MMI method and the self-imaging principle is described. Using this method, NXM MMI couplers, MMI splitter/combiners are analyzed. Computer simulations for illustrating the "Multimode Interference Mechanism" are carried out. The MMI approach is used to analyze overmoded 'rectangular metallic' and 'dielectric slab' type of wa...
Design of an electromagnetic classifier for spherical targets
Ayar, Mehmet; Sayan, Gönül; Department of Electrical and Electronics Engineering (2005)
This thesis applies an electromagnetic feature extraction technique to design electromagnetic target classifiers for conductors, dielectrics and dielectric coated conductors using their natural resonance related late-time scattered responses. Classifier databases contain scattered data at only a few aspects for each candidate target. The targets are dielectric spheres of varying sizes and refractive indices, perfectly conducting spheres varying sizes and dielectric coated conducting spheres of varying refra...
Development of electrochemical etch-stop techniques for integrated MEMS sensors
Yaşınok, Gözde Ceren; Akın, Tayfun; Department of Electrical and Electronics Engineering (2006)
This thesis presents the development of electrochemical etch-stop techniques (ECES) to achieve high precision 3-dimensional integrated MEMS sensors with wet anisotropic etching by applying proper voltages to various regions in silicon. The anisotropic etchant is selected as tetra methyl ammonium hydroxide, TMAH, considering its high silicon etch rate, selectivity towards SiO2, and CMOS compatibility, especially during front-side etching of the chip/wafer. A number of parameters affecting the etching are inv...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. T. Ahi, “Solving the forward problem of electrical source imaging by applying the reciprocal approach and the finite difference method,” M.S. - Master of Science, Middle East Technical University, 2007.