Hide/Show Apps

Improved state estimation for jump Markov linear systems

Orguner, Umut
This thesis presents a comprehensive example framework on how current multiple model state estimation algorithms for jump Markov linear systems can be improved. The possible improvements are categorized as: -Design of multiple model state estimation algorithms using new criteria. -Improvements obtained using existing multiple model state estimation algorithms. In the first category, risk-sensitive estimation is proposed for jump Markov linear systems. Two types of cost functions namely, the instantaneous and cumulative cost functions related with risk-sensitive estimation are examined and for each one, the corresponding multiple model estate estimation algorithm is derived. For the cumulative cost function, the derivation involves the reference probability method where one defines and uses a new probability measure under which the involved processes has independence properties. The performance of the proposed risk-sensitive filters are illustrated and compared with conventional algorithms using simulations. The thesis addresses the second category of improvements by proposing -Two new online transition probability estimation schemes for jump Markov linear systems. -A mixed multiple model state estimation scheme which combines desirable properties of two different multiple model state estimation methods. The two online transition probability estimators proposed use the recursive Kullback-Leibler (RKL) procedure and the maximum likelihood (ML) criteria to derive the corresponding identification schemes. When used in state estimation, these methods result in an average error decrease in the root mean square (RMS) state estimation errors, which is proved using simulation studies. The mixed multiple model estimation procedure which utilizes the analysis of the single Gaussian approximation of Gaussian mixtures in Bayesian filtering, combines IMM (Interacting Multiple Model) filter and GPB2 (2nd Order Generalized Pseudo Bayesian) filter efficiently. The resulting algorithm reaches the performance of GPB2 with less Kalman filters.