Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
A boundary element formulation for axi-symmetric problems in poro-elasticity
Download
index.pdf
Date
2006
Author
Özyazıcıoğlu, Mehmet H
Metadata
Show full item record
Item Usage Stats
132
views
96
downloads
Cite This
A formulation is proposed for the boundary element analysis of poro-elastic media with axi-symmetric geometry. The boundary integral equation is reduced to a set of line integral equations in the generating plane for each of the Fourier coefficients, through complex Fourier series expansion of boundary quantities in circumferential direction. The method is implemented into a computer program, where the fundamental solutions are integrated by Gaussian Quadrature along the generator, while Fast Fourier Transform algorithm is employed for integrations in circumferential direction. The strongly singular integrands in boundary element equations are regularized by a special technique. The Fourier transform solution is then inverted in to Rθz space via inverse FFT. The success of the method is assessed by problems with analytical solutions. A good fit is observed in each case, which indicates effectiveness and reliability of the present method.
Subject Keywords
Strength of materials.
,
Mechanics, Applied.
URI
http://etd.lib.metu.edu.tr/upload/3/12607351/index.pdf
https://hdl.handle.net/11511/16493
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
The DRBEM solution of incompressible MHD flow equations
Bozkaya, Nuray; Tezer, Münevver (Wiley, 2011-12-10)
This paper presents a dual reciprocity boundary element method (DRBEM) formulation coupled with an implicit backward difference time integration scheme for the solution of the incompressible magnetohydrodynamic (MHD) flow equations. The governing equations are the coupled system of Navier-Stokes equations and Maxwell's equations of electromagnetics through Ohm's law. We are concerned with a stream function-vorticity-magnetic induction-current density formulation of the full MHD equations in 2D. The stream f...
The use of dual reciprocity boundary element method in coupled thermoviscoelasticity
Baranoglu, Besim; Mengi, Yalcin (Elsevier BV, 2006-01-01)
A boundary element formulation is presented in a unified form for the analysis of thermoviscoelasticity problems. The formulation contains the thermoelastic material as a special case. The boundary-only nature of boundary element method is retained through the use of particular integral method; where the particular solutions are evaluated with the aid of dual reciprocity approximation. The proposed formulation can be used in both coupled and uncoupled thermoviscoelasticity analyses, and it permits performin...
A model for the computation of quantum billiards with arbitrary shapes
Erhan, Inci M.; Taşeli, Hasan (Elsevier BV, 2006-10-01)
An expansion method for the stationary Schrodinger equation of a three-dimensional quantum billiard system whose boundary is defined by an arbitrary analytic function is introduced. The method is based on a coordinate transformation and an expansion in spherical harmonics. The effectiveness is verified and confirmed by a numerical example, which is a billiard system depending on a parameter.
A frequency domain boundary element formulation for dynamic interaction problems in poroviscoelastic media
Argeso, Hakan; Mengi, Yalcin (2014-02-01)
A unified formulation is presented, based on the boundary element method, to perform the interaction analysis for the problems involving poroviscoelastic media. The proposed formulation permits the evaluation of all the elements of impedance and input motion matrices at a single step in terms of system matrices of boundary element method without solving any special problem, such as, unit displacement or load problem, as required by conventional methods. It further eliminates the complicated procedure and th...
A Shear flexible facet shell element for large deflection and instability analysis
Oral, Süha (Elsevier BV, 1991-12-01)
A facet shell element based on an anisoparametric plate bending element and a quadratic plane-stress element with vertex rotations is formulated for geometrically nonlinear analysis of shells. The updated Lagrangian formulation which proves to be effective for three-node elements is employed. The restriction of small rotation between the increments is removed by using Hsiao's finite rotation method in which the rigid body motion is eliminated from the total displacement. The displacement control is used to ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
M. H. Özyazıcıoğlu, “A boundary element formulation for axi-symmetric problems in poro-elasticity,” Ph.D. - Doctoral Program, Middle East Technical University, 2006.